

Global Sustainability Institute

Making Decisions Using Uncertain Forecasts

Environment Agency

Environmental Modelling in Industry Study Group, Cambridge – March 2017

Green M., Kabir S., Peters, J., Georgieva, L., Zyskin, M., and Beckerleg, E.

e: michael.green@anglia.ac.uk

Rationale

- Probabilistic flood forecasting can provide a range of benefits when compared with conventional deterministic methods:
- Longer forecasting lead times
- Represents the inherent uncertainties
- Allows action to be taken earlier.
- However, more information does not necessarily result in better decision-making, particularly where the probabilistic forecasts contain conflicting predictions.

Challenge

Evaluate the (mis)use of probabilistic flood forecasts in incident response and proactive flood management

Routine decisions

i.e. issue a flood warning, closing a flood barrier, evacuation = least-cost optimisation

Reactive decisions

i.e. heuristics, lookup tables, risk appetite and bias = rules of thumb

Example

Ensemble 8

Ensemble 9

Ensemble 10

Colne Barrier, Exeter

3.432 £1,625,081

3.421 £1,492,969

3.432 £1,633,428

3.147

3.148

3.148

3.679 £4,678,587

3.665 £4,505,170

3.650 £4,323,338

Event	P4	_H4	P4_	H5	P4_	Н6	P4_	_H7	P5_	H1	P 5_	H2	P!	5_H3
Date & Time	13/01/20	009 13:45	14/01/20	09 02:15	14/01/20	09 14:30	15/01/20	09 03:00	09/02/20	09 12:00	10/02/20	09 00:15	10/02/2	009 12:30
Actural peak Water Level (mAOD)	3.293		2.973		3.0	3.021		2.717		2.978		70	3	.482
Actual closure ?????														
Deterministic Flood Forecast														
Forecast peak water level (mAOD)	3	.33	3.0	01	3.0	07	2.	88	3.	15	3.0	05	3	3.55
Closure Threshold (mAOD)	2	20	۷ ٬	20	۷ ٬	20	2	20	2	20	3 '	20		20
Closure Decision		Υ	N	l	1	l	1	N .	1	l l	N	١		Υ
Decision Cost (£)	£4	,000	£	0	£	0	£	0	£	0	£	0	£4	1,000
Decision Benefit (£)		03	£	0	£	0	£	0	£	0	£	0	£2,2	47,776
Hit		0	0		0		0		0		0		1	
False Alarm		1	0		0		0		()	0			0
Miss		0	0		0		()	()	()		0
No Event		0	1		1		·	1	·		1	1		0
	Į.													
	Peak	Closure	Peak	Closure	Peak	Closure	Peak	Closure	Peak	Closure	Peak	Closure	Peak	Closure
Probabilistic Flood Forecast	Level	Benefit	Level	Benefit	Level	Benefit	Level	Benefit	Level	Benefit	Level	Benefit	Level	Benefit
	(mAOD)	(£)	(mAOD)	(£)	(mAOD)	(£)	(mAOD)	(£)	(mAOD)	(£)	(mAOD)	(£)	(mAOD)	(£)
Ensemble 1		£1,629,727			3.192	£0	2.948		3.033	£0	3.188			£4,831,256
Ensemble 2		£1,519,064		£0	3.189	£0	2.921	£0	3.032	£0	3.184			£4,714,939
Ensemble 3	3.431	£1,617,018		£0	3.192	£0	2.947	£0	3.032	£0	3.188		3.748	£5,537,264
Ensemble 4	3.403	£1,272,846	3.142	£0	3.186	£0	2.943	£0	3.038	£0	3.195	£0	3.694	£4,870,774
Ensemble 5	3.438	£1,702,941	3.159	£0	3.187	£0	2.924	£0	3.054	£0	3.142	£0	3.675	£4,632,138
Ensemble 6	3.400	£1,233,626	3.149	£0	3.199	£0	2.951	£0	3.023	£0	3.183	£0	3.690	£4,812,196
Ensemble 7	3.428	£1,584,633	3.148	£0	3.193	£0	2.973	£0	3.038	£0	3.233	£0	3.677	£4.658,119

£0

£0

2.957

2.943

2.949

£0

£0

£0

3.023

3.024

3.022

£0

3.220

3.207

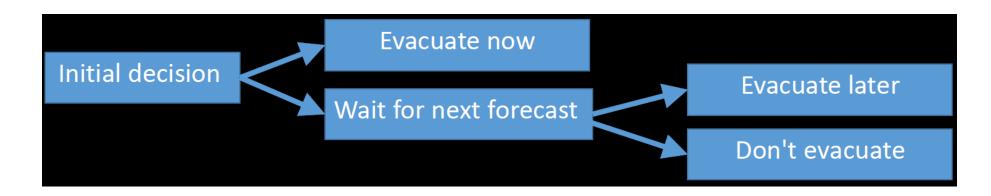
3.149

£0

£0

3.179

3.192


3.191

(Problem framing) Challenge

Multiple forecast/multiple decisions

	No Control Barrier	Control Barrier	Partial Defence
Big flood 30%	6	10	10
Small flood 50%	4	3	2
No flood 20%	4	1	2

Branching ('wait and see') decisions

Challenge

Evaluate the (mis)use of probabilistic flood forecasts in incident response and proactive flood management

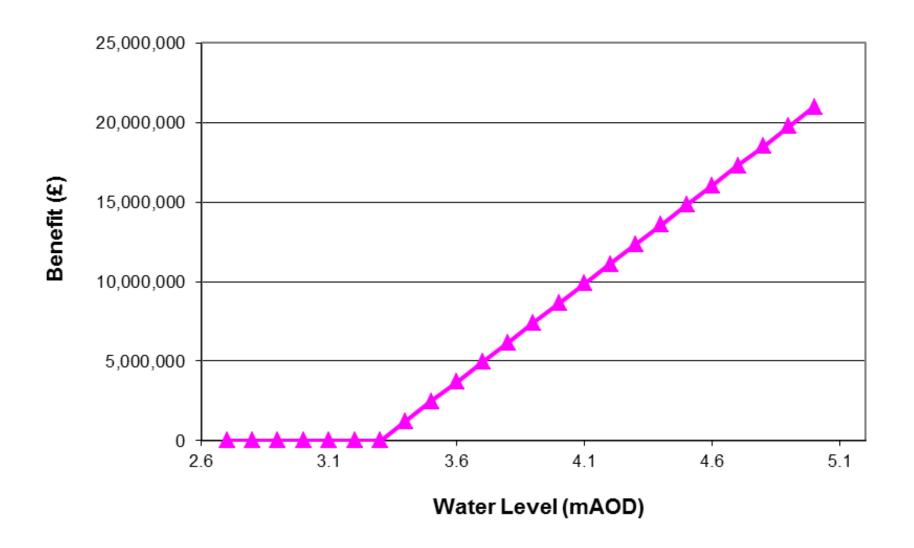
Routine Decisions

i.e. issue a flood warning, closing a flood barrier, evacuation = least-cost optimisation

Reactive decisions

i.e. heuristics, lookup tables, risk appetite and bias = rules of thumb

Objective:


Develop an easy-to-use decision making tool to be applied to multiple forecast, multiple action, delayed decisions.

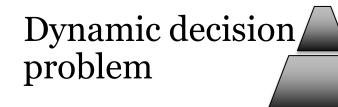
Problem framing

	Evacuate	Control Barrier	Partial Defence	Water Course Clearing	No Action
Cost	50,000	100,000	30,000	15,000	0
Benefit					
Ensemble One	8,250,282	13,414,096	5.455638	2,727,819	0
Ensemble Two	4,825,375	7,755,312	3,192,124	1,596,062	0
•••	•••	•••	•••	•••	•••

Costing

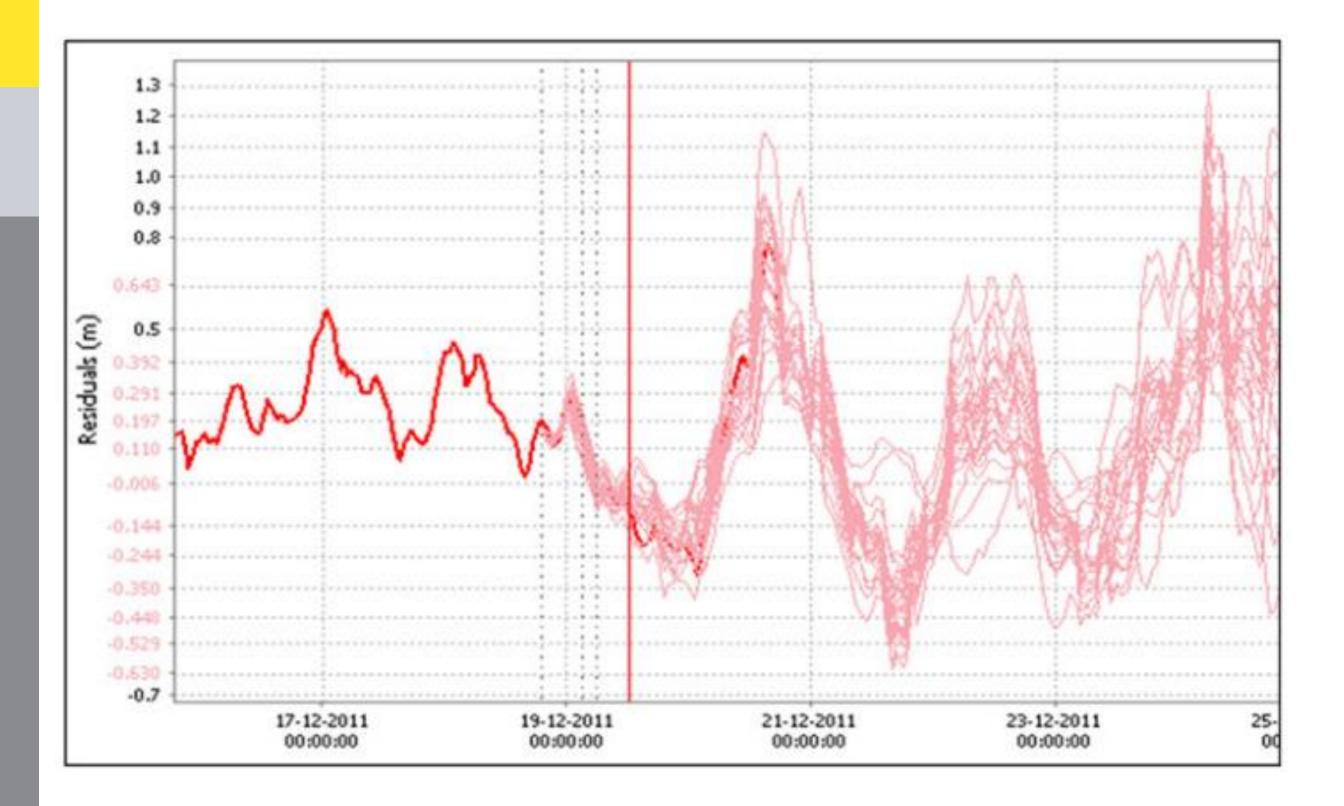
Peak Water Level v.s. Barrier Closure Benefit

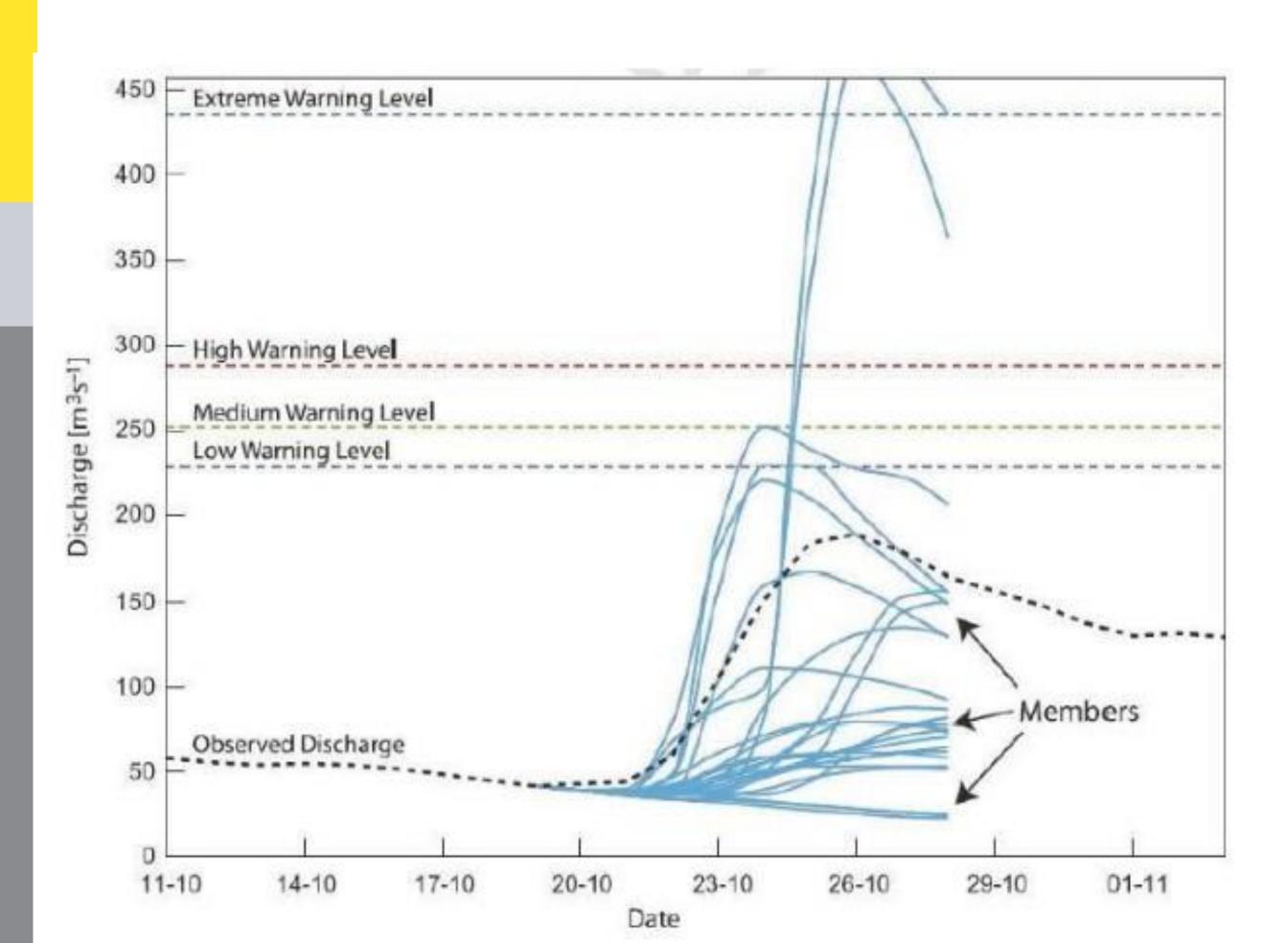
EA costing incorporates effect of different factors: social, risk to life, property damage...


Implementation Assumption:

Other actions have a relative effect on each potential damage

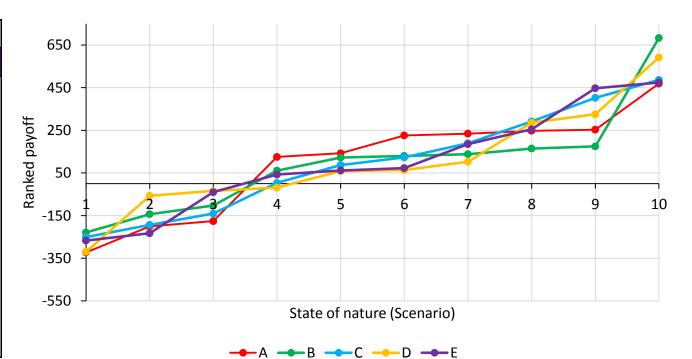
Evaluation

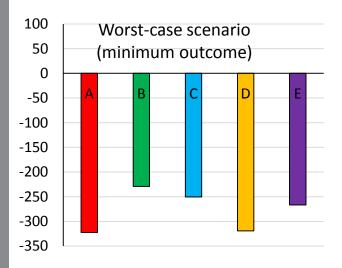

		Sce	nario			Non-	probabilistic	decision criteria	
Option	S1	S2	S3	etc.	Average (<i>Laplace</i>)	Minimum (<i>Maximin</i>)	Maximum (<i>Maximax</i>)	Minimum regret (<i>Minimax regret</i>)	Weighted average (<i>Hurwicz</i>)
A	10	20	50	100	45	10	100	900	55
В	2	3	3	1000	252 🗸	2	1000	199 🗸	501 🗸
С	200	200	202	202	201	200 🗸	202	798	201
D	100	110	120	410	185	100	410	590	255
etc.									
Best outcome	200	200	202	1000		Non-pro	babilistic ded	cision outcome (🗸)	
Best option	С	С	С	В	В	С	В	В	В

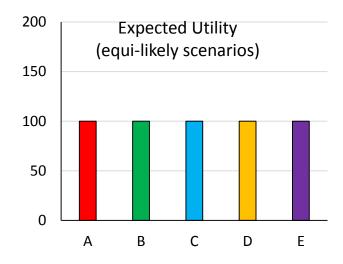


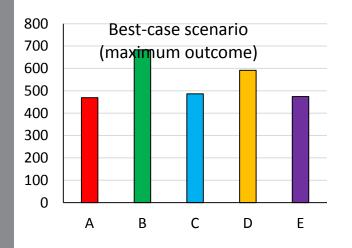
Making decisions with probabilistic forecasts

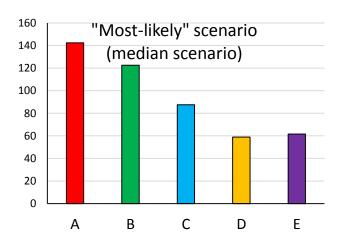
	Evacuate	Don't Evacuate	Temporary defences
Big flood 30%	6	10	10
Small flood 50%	4	3	2
No flood 20%	4	1	2

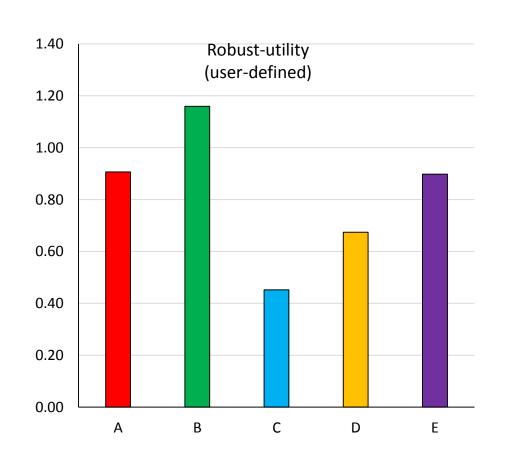

Probabilistic Forecast Data

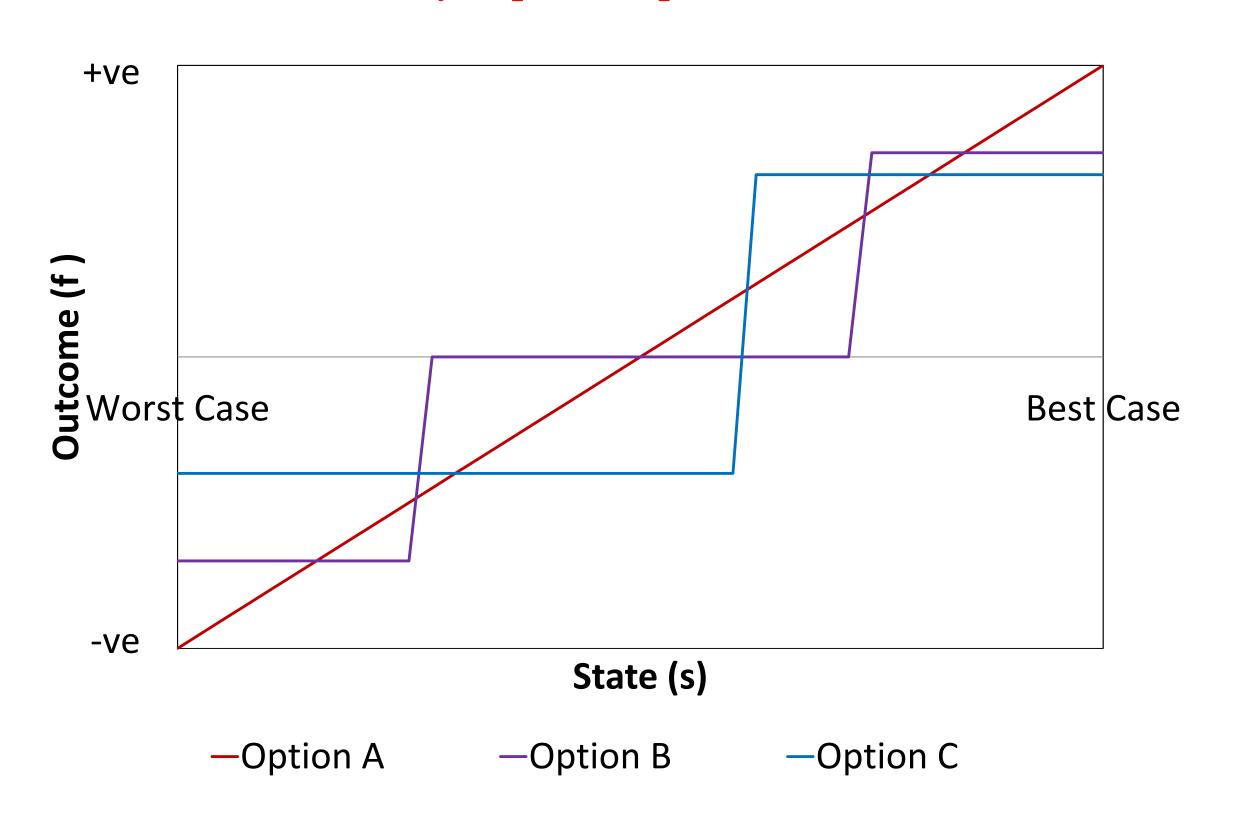

	Level (mAOD)	Flood impact avoided by action (£)	Exceeding threshold?
Ensemble 1	3.297	£0	0
Ensemble 2	3.296	£0	0
Ensemble 3	3.264	£0	0
Ensemble 4	3.277	£0	0
Ensemble 5	3.317	£208,981	1
Ensemble 6	3.318	£224,816	1
Ensemble 7	3.285	£0	0
Ensemble 8	3.331	£386,912	1
Ensemble 9	3.330	£376,332	1
Ensemble 10	3.288	£0	0
Ensemble 11	3.291	£0	0
Ensemble 12	3.336	£442,730	1
Ensemble 13	3.297	£0	0
Ensemble 14	3.296	£0	0
Ensemble 15	3.264	£0	0
Ensemble 16	3.292	£0	0
Ensemble 17	3.302	£25,561	1
Ensemble 18	3.342	£513,820	1
Ensemble 19	3.292	£O	0
Ensemble 20	3.288	£0	0
Ensemble 21	3.310	£124,276	1
Ensemble 22	3.310	£124,032	1
Ensemble 23	3.272	£O	0
Ensemble 24	3.284	£0	0
pected Action Benef	fit (£)	£101,144	
tion Level Threshold	d (mAOD)		3.3
ceeding probability			38%


	Event	P8	_H2	P8_	Н3	P8	_H4	P8_	H5	P8_H6	
	Date & Time	31/01/2	010 13:00	01/02/20	10 01:15	01/02/2	010 13:45	02/02/20	10 02:15	02/02/2010 14:15	
5	Actural peak Water Level (mAOD)	3.	109	3.0)63	3.	201	2.9	13	3.223	
		Peak	Closure	Peak	Closure	Peak	Closure	Peak	Closure	Peak	Closure
	Probabilistic Flood Forecast	Level	Benefit	Level	Benefit	Level	Benefit	Level	Benefit	Level	Benefit
		(mAOD)	(£)	(mAOD)	(£)	(mAOD)	(£)	(mAOD)	(£)	(mAOD)	(£)
	Ensemble 1	3.454	£1,902,721	3.302	£22,598	3.513	£2,631,165	3.199	£0	3.335	£435,950
	Ensemble 2	3.448	£1,830,456	3.298	£0	3.502	£2,492,383	3.203	£0	3.306	£75,112
	Ensemble 3	3.447	£1,811,789	3.282	£0	3.509	£2,586,432	3.211	£0	3.313	£161,385
	Ensemble 4	3.451	£1,860,180	3.292	£0	3.522	£2,743,694	3.197	£0	3.310	£122,475
	Ensemble 5	3.445	£1,794,370	3.277	£0	3.499	£2,454,749	3.217	£0	3.345	£558,540
	Ensemble 6	3.458	£1,954,484	3.311	£136,910	3.502	£2,497,445	3.176	£0	3.330	£371,499
	Ensemble 7	3.439	£1,721,763	3.299	£0	3.501	£2,479,104	3.199	£0	3.282	£0
	Ensemble 8	3.462	£1,999,359	3.303	£36,462	3.518	£2,692,539	3.193	£0	3.319	£238,502
	Ensemble 9	3.458	£1,952,591	3.299	£0	3.515	£2,659,119	3.222	£0	3.343	£531,224
	Ensemble 10	3.454	£1,905,899	3.288	£0	3.524	£2,761,995	3.186	£0	3.333	£406,898
	Ensemble 11	3.455	£1,908,725	3.306	£68,629	3.521	£2,723,441	3.178	£0	3.361	£755,255
	Ensemble 12	3.453	£1,890,068	3.310	£121,119	3.510	£2,591,980	3.199	£0	3.380	£992,322
	Ensemble 13	3.454	£1,906,360	3.312	£145,650	3.520	£2,722,821	3.175	£0	3.341	£509,867
	Ensemble 14	3.448	£1,831,537	3.289	£0	3.504	£2,521,741	3.192	£0	3.354	£661,074
	Ensemble 15	3.464	£2,020,999	3.306	£74,736	3.520	£2,719,812	3.223	£0	3.337	£458,360
	Ensemble 16	3.449	£1,836,213	3.301	£16,772	3.514	£2,639,421	3.197	£0	3.287	£0
	Ensemble 17	3.467	£2,060,485	3.307	£91,073	3.508	£2,570,101	3.190	£0	3.349	£601,623
	Ensemble 18	3.457	£1,945,171	3.318	£221,028	3.505	£2,526,135	3.212	£0	3.344	£543,720
	Ensemble 19	3.460	£1,981,190	3.300	£0	3.508	£2,573,999	3.189	£0	3.375	£920,476
	Ensemble 20	3.463	£2,012,224	3.300	£0	3.518	£2,687,949	3.199	£0	3.343	£532,226
	Ensemble 21	3.455	£1,913,867	3.305	£57,575	3.506	£2,541,207	3.178	£0	3.362	£771,086
	Ensemble 22	3.464	£2,027,166	3.312	£149,596	3.509	£2,577,662	3.217	£0	3.353	£654,154
	Ensemble 23	3.441	£1,741,614	3.314	£167,003	3.513	£2,627,437	3.176	£0	3.347	£576,720
	Ensemble 24	3.453	£1,889,914	3.302	£19,179	3.501	£2,480,560	3.214	£0	3.282	£0
	Expected Closure Benefit (£)	£1,9	04,131	£55	,347	£2,6	04,287	£	0	£453	3,270
	Closure Cost (£)	£4,000		£4,	000	£4	,000	£4,0	000	£4,	000
21	Closure decision	Y		<u> </u>	<u>/</u>		Υ	N	.	<u> </u>	/
5	Hit	0		()		0	0		0	
16	False Alarm		1	1	1	1		0		1	1
0	Miss	0		0		0		0		0	
52	No Event		0	()		0	1		()
Ope	ration Panel Performance	Assessm	ent Mo	CA_Resul	ts She	eet1	(+)				


Synthetic data


				Option		
		Α	В	С	D	E
	1	-322.46	-229.05	-250.46	-319.32	-266.76
	2	-199.94	-142.93	-193.52	-56.67	-232.88
	3	-175.87	-102.74	-140.36	-33.82	-39.78
0	4	125.27	61.20	3.61	-19.00	42.70
Scenario	5	142.38	122.48	87.50	58.84	61.65
Cer	6	226.13	130.26	122.81	63.84	73.14
S	7	234.50	138.32	189.52	103.22	185.12
	8	247.80	164.65	291.69	285.84	254.94
	9	253.08	174.78	402.62	325.47	447.37
	10	469.11	683.04	486.59	591.60	474.50





Try it yourself

Q) Do you prefer Option A, B or C?

$$z = \max_{d \in D} ((\alpha, A) - ((1 - \alpha), B)) d$$

$$A = \left(\frac{(a)d - \min_{d \in D}(a)d}{\max_{d \in D}(a)d - \min_{d \in D}(a)d}\right)$$

$$B = \left(\frac{(b)d - \min(b)d}{\max(b)d - \min(b)d}\right)$$

$$a = \sum_{s=1}^{n} \left(\frac{\left((f)s - \chi \right)}{\left(\max_{s \in S} (f)s - \chi \right)} \right)$$

$$b = \sum_{s=1}^{n} \left(\frac{((f)s - t)}{\left(\min_{s \in S} (f)s - t \right)} \right)$$

$$\chi = \left(\max_{s=n} f - \left(\left(\max_{s \in S} (f) s - \min_{s \in S} (f) s \right) \cdot \left(\frac{\beta}{100} \right) \right) \right)$$

Advantages:

z = decision outcome

n = number of states

d = option/s

f = outcome

s = state

 α = coefficient of

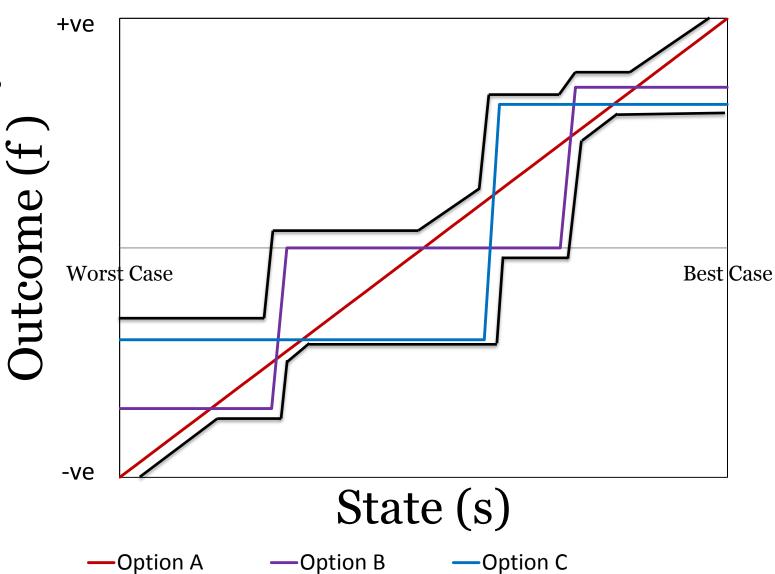
 β = coefficient of

robustness (0-100)

t = threshold (e.g. 0)

optimism (0-1)

- Exploratory decision tool
- Accommodate a range of risk appetites
- Incorporate threshold concepts
- Supports static and adaptive decision making
- Does not rely on probabilities
- Highly reproducible from small sub samples
- Can be easily integrated with more advanced techniques
- Easy to implement


Green and Weatherhead, 2014

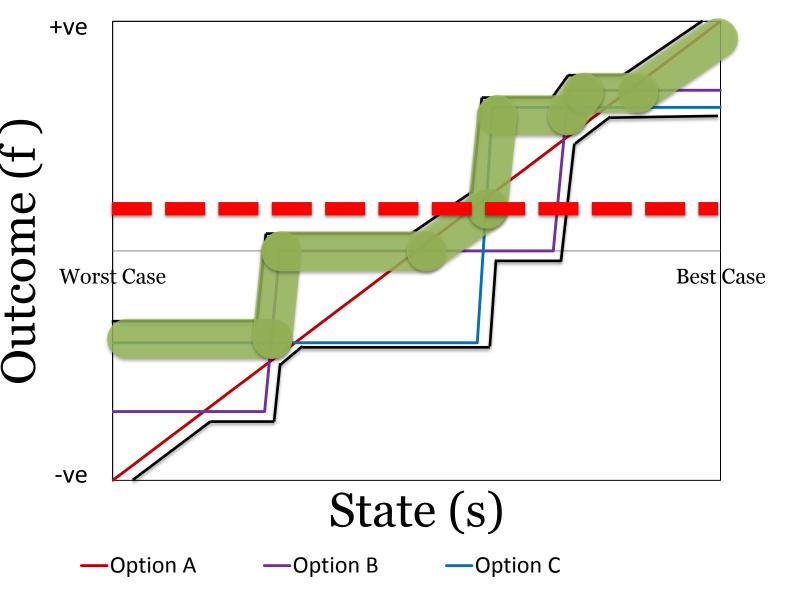
 Plot the pay-off of the action against each scenario

 Plot the pay-off of the action against each scenario

Identify 'best-possible'
 & 'worst possible'
 outcome

• Plot the pay-off of the action against each scenario

Identify 'best-possible'
 & 'worst possible'
 outcome


• Specify:

Robustness range

Threshold

Weighting coefficient

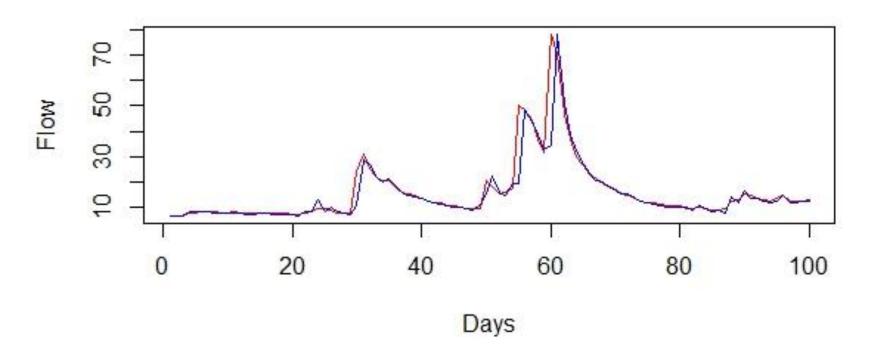
Score each option

So...

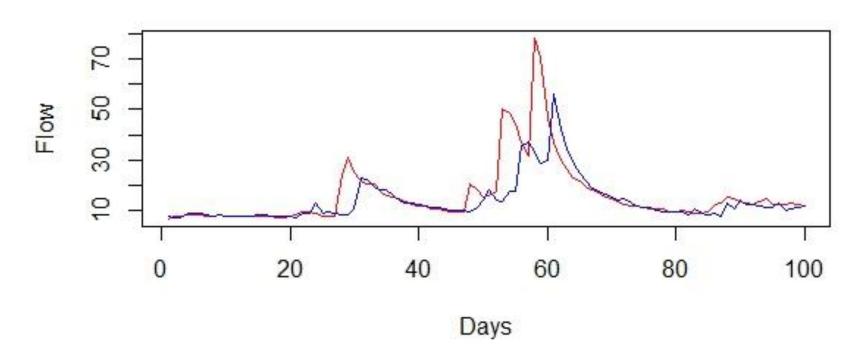
Coefficient of optimism (α) Coefficient of robustness (β) Threshold of acceptability (t) 0.5 80 0

State								~~ C2		
1	State	State	f _d	$\max_{d \in D} f_d$	$\min_{d \in D} f_d$	Х	$(f_d - \chi)$	$(\max_{d \in D} f_d - \chi)$	$\left(\frac{(f_{d}-\chi)}{\left(\max_{d\in D} f_{d}-\chi\right)}\right)$	ı
3	1									ı
1	2	1	-10		-15	-12.60	2.60	9.60	0.27	
5	3	2	-8	-3	-15	-12.60	4.60	9.60	0.48	
6	4	3	-6	Option	Α	В	(<i>α</i> · <i>A</i>)	$((1 - \alpha) \cdot B)$) Green Z-sc	ore
7	5	4	-4	Α	4.75	3.27	2.37	1.63	0.74	
3	6	5	-2	, ,	1.70	0.27	2.07	1.00	0.7 1	
9	7	6	0	В	6.00	3.00	3.00	1.50	1.50	
10	8	7	2	С	4.94	3.35	2.47	1.68	0.79	
11	9	8	4	-		0.00	0.20	0.20	1.00	_
-	10	9	6	15	3.6	5.88	0.12	9.12	0.01	г
	11	10	8	15	3.6	5.88	2.12	9.12	0.23	
	Tota	11	10	15	3.6	5.88	4.12	9.12	0.45	ı
*	Th	Total							4.75	

—Option A

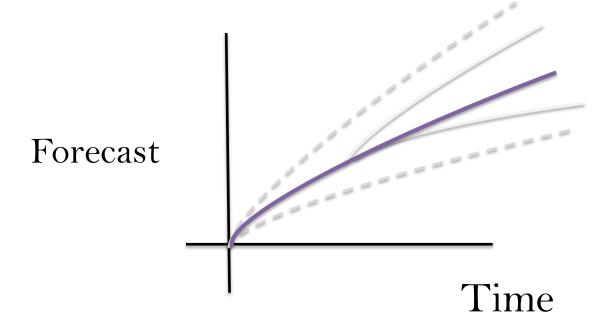

—Option B

—Option C


						Lead	time (Lar	ge Catchi	ment) in (days				
	10	9	8	7	6	5	4	3	2	1	0.5	0		
┕								II Catchr	nent) in h	ours				
	60	54	48	42	36	30	24	18	12	6	2	0		
	Ro	utine &	enha	nced f	orecasting	g								
L					Initiate er	nhanced	d monitori	ng						
							Flood Ad	lvisory Tel	leconferer	nces				
		Staff Preparedness												
							Flood	awarene	ss raising	with public				
							Struc		ks and wa	atercourse				
							Deploy temporary and							
┡		-					demountable defences							
ı									•	active control ructures				
H	\dashv	\neg	\dashv		Dep	loyment	t of staff to	respond		ally to floods a	nd/or monitor f	looding in		
									commu	ınities				
Г										Issue Flood	Warnings to			
L										-	al partners			
											Warnings to olic			
		_									Flood Warning	s to public and		
										10000 007010 1	partners	o to pablic aria		
				Ę.										
Jn	itial ded	rision	No.	EV	acuate nov	W					Monitoring & f	orecasting		
1111	mar uec			Mai+ f	or next for	rocast		Evacuate	later		Event prepara	tion		
				vvalt 10	or next for	ecast		Don't evac	cuate		On-site activiti Warning disse			

Credibility and delaying decisions

1 Day lead prediction



3 Day lead prediction

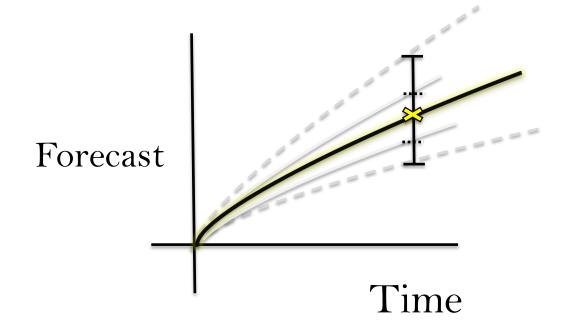
Credibility and delaying decisions

Question to answer: **How** does the credibility of predictions change as we get closer to the predicted event and what **impact** does this have on decisions?

Option One: Use historical data to calculate the expected cost of bad decisions

Note: This relies on data existing and could be costly to run for each decision

Credibility


Our proposal:

'Relative Reliability Score' to provide an 'error fan' around the prediction

Calculate whether decision would change at either end of the fan

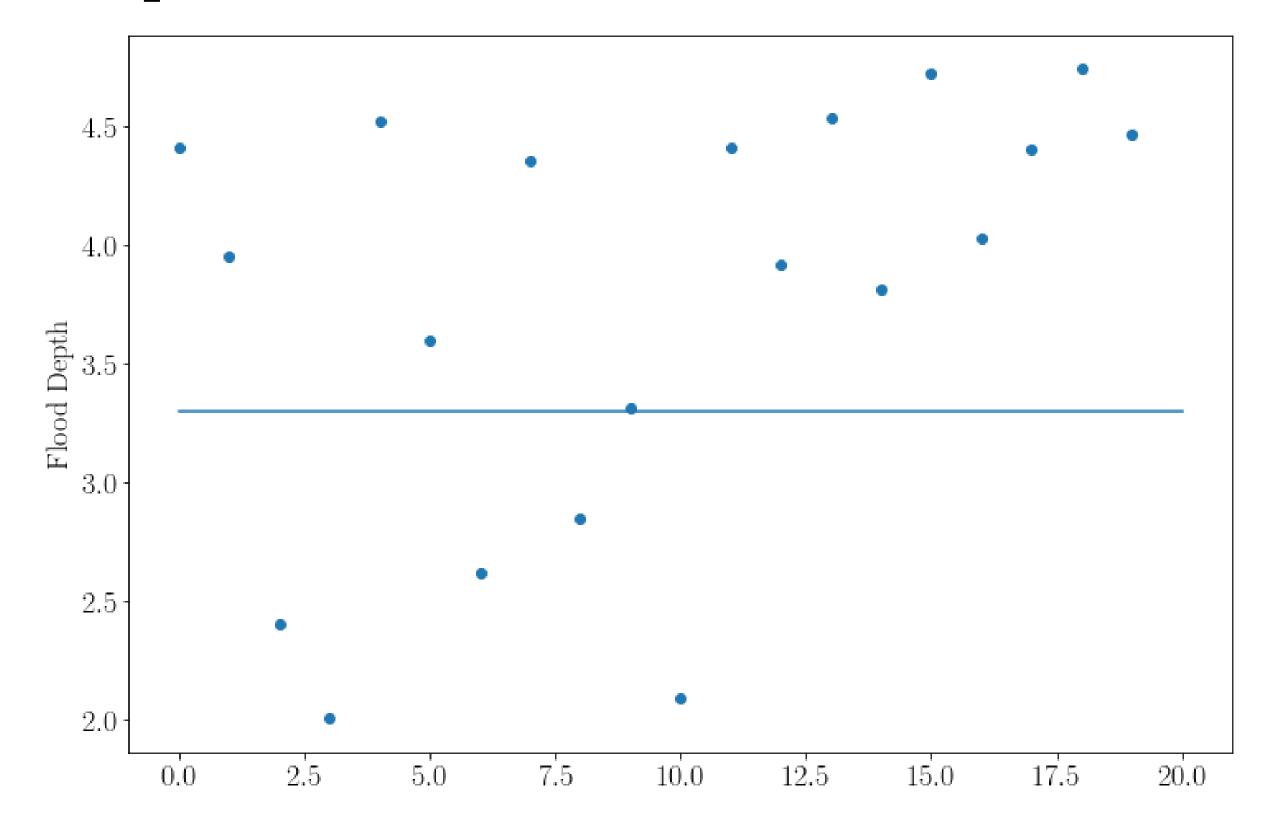
Calculate whether decision would change with a smaller

Calculate whether decision would change with a smaller

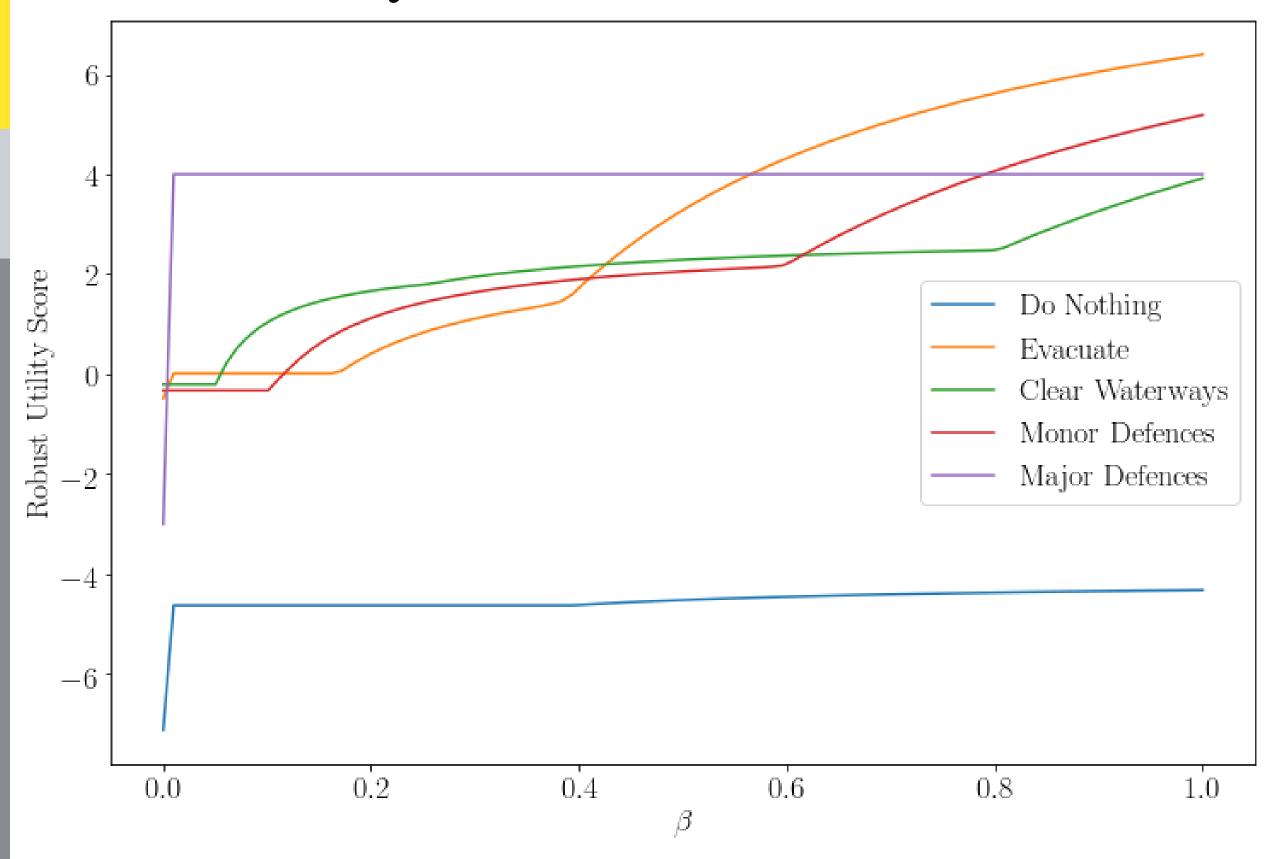
Construction of Decision Matrix

Costs of Mitigation actions: C_i

Expected damage caused per flood depth: f(h)


Ensemble Predictions of flood depths: h_{flood}

Avoided costs (benefit) of Mitigation actions: E_i


Decision Matrix

$$D_{ij} = C_i + E_j f(h_{flood})$$

Sample Ensembles

Robust Utility Scores

	Event	P8	_H2	P8_	Н3	P8	_H4	P8_	H5	P8_H6	
	Date & Time	31/01/2	010 13:00	01/02/20	10 01:15	01/02/2	010 13:45	02/02/20	10 02:15	02/02/2010 14:15	
5	Actural peak Water Level (mAOD)	3.	109	3.0)63	3.	201	2.9	13	3.223	
		Peak	Closure	Peak	Closure	Peak	Closure	Peak	Closure	Peak	Closure
	Probabilistic Flood Forecast	Level	Benefit	Level	Benefit	Level	Benefit	Level	Benefit	Level	Benefit
		(mAOD)	(£)	(mAOD)	(£)	(mAOD)	(£)	(mAOD)	(£)	(mAOD)	(£)
	Ensemble 1	3.454	£1,902,721	3.302	£22,598	3.513	£2,631,165	3.199	£0	3.335	£435,950
	Ensemble 2	3.448	£1,830,456	3.298	£0	3.502	£2,492,383	3.203	£0	3.306	£75,112
	Ensemble 3	3.447	£1,811,789	3.282	£0	3.509	£2,586,432	3.211	£0	3.313	£161,385
	Ensemble 4	3.451	£1,860,180	3.292	£0	3.522	£2,743,694	3.197	£0	3.310	£122,475
	Ensemble 5	3.445	£1,794,370	3.277	£0	3.499	£2,454,749	3.217	£0	3.345	£558,540
	Ensemble 6	3.458	£1,954,484	3.311	£136,910	3.502	£2,497,445	3.176	£0	3.330	£371,499
	Ensemble 7	3.439	£1,721,763	3.299	£0	3.501	£2,479,104	3.199	£0	3.282	£0
	Ensemble 8	3.462	£1,999,359	3.303	£36,462	3.518	£2,692,539	3.193	£0	3.319	£238,502
	Ensemble 9	3.458	£1,952,591	3.299	£0	3.515	£2,659,119	3.222	£0	3.343	£531,224
	Ensemble 10	3.454	£1,905,899	3.288	£0	3.524	£2,761,995	3.186	£0	3.333	£406,898
	Ensemble 11	3.455	£1,908,725	3.306	£68,629	3.521	£2,723,441	3.178	£0	3.361	£755,255
	Ensemble 12	3.453	£1,890,068	3.310	£121,119	3.510	£2,591,980	3.199	£0	3.380	£992,322
	Ensemble 13	3.454	£1,906,360	3.312	£145,650	3.520	£2,722,821	3.175	£0	3.341	£509,867
	Ensemble 14	3.448	£1,831,537	3.289	£0	3.504	£2,521,741	3.192	£0	3.354	£661,074
	Ensemble 15	3.464	£2,020,999	3.306	£74,736	3.520	£2,719,812	3.223	£0	3.337	£458,360
	Ensemble 16	3.449	£1,836,213	3.301	£16,772	3.514	£2,639,421	3.197	£0	3.287	£0
	Ensemble 17	3.467	£2,060,485	3.307	£91,073	3.508	£2,570,101	3.190	£0	3.349	£601,623
	Ensemble 18	3.457	£1,945,171	3.318	£221,028	3.505	£2,526,135	3.212	£0	3.344	£543,720
	Ensemble 19	3.460	£1,981,190	3.300	£0	3.508	£2,573,999	3.189	£0	3.375	£920,476
	Ensemble 20	3.463	£2,012,224	3.300	£0	3.518	£2,687,949	3.199	£0	3.343	£532,226
	Ensemble 21	3.455	£1,913,867	3.305	£57,575	3.506	£2,541,207	3.178	£0	3.362	£771,086
	Ensemble 22	3.464	£2,027,166	3.312	£149,596	3.509	£2,577,662	3.217	£0	3.353	£654,154
	Ensemble 23	3.441	£1,741,614	3.314	£167,003	3.513	£2,627,437	3.176	£0	3.347	£576,720
	Ensemble 24	3.453	£1,889,914	3.302	£19,179	3.501	£2,480,560	3.214	£0	3.282	£0
	Expected Closure Benefit (£)	£1,9	04,131	£55	,347	£2,6	04,287	£	0	£453	3,270
	Closure Cost (£)	£4,000		£4,	000	£4	,000	£4,0	000	£4,	000
21	Closure decision	Y		<u> </u>	<u>/</u>		Υ	N	.	<u> </u>	/
5	Hit	0		()		0	0		0	
16	False Alarm		1	1	1	1		0		1	1
0	Miss	0		0		0		0		0	
52	No Event		0	()		0	1		()
Ope	ration Panel Performance	Assessm	ent Mo	CA_Resul	ts She	eet1	(+)				

Output

Spreadsheet:

Input: Decision matrix, scenario predictions

Output: Robustness scores of decision and best

decision

Python:

Randomly Generated Water Levels, actions determined by estimated reduction of damage

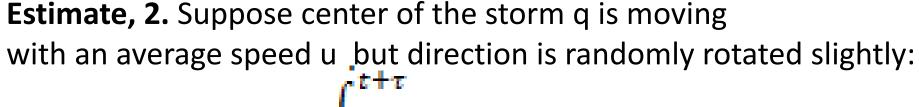
Input: α , β , t and Decision matrix

Output: Robustness scores of decisions, and best decision.

Further Work

Run with real life data and integrate to EA operations

Test using historic data to fine tune parameters


Implement a robust method for making decisions about delaying, using existing credibility information for forecasts.

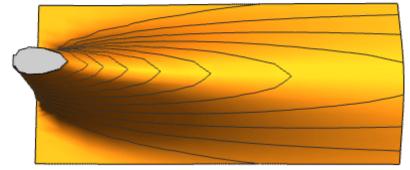
Prediction probability vs. lead time

For typical impacts, $p \sim \frac{2L/R}{2\delta_{\theta}} = \frac{L}{R \delta_{\theta}} = \frac{L}{u t \delta_{\theta}} \sim \frac{1}{t}$

L storm size, $2\delta_{\theta}$ forecast cone width, u typical speed. It is less than that for oblique impacts

$$\ddot{q} = \omega \times \dot{q}, \qquad \langle \int_{t}^{t+\tau} \omega^{n} dt \rangle = \mu_{n} \tau, n = 1, 2$$

Probability density function in phase space for the storm center will satisfy eq. of the sort:


$$\frac{\partial f}{\partial t} = -p_i \frac{\partial f}{\partial q_i} + \kappa \left(-p_i \frac{\partial f}{\partial p_i} + p_1^2 \frac{\partial^2 f}{\partial^2 p_2} + p_2^2 \frac{\partial^2 f}{\partial^2 p_1} - 2 p_1 p_2 \frac{\partial^2 f}{\partial p_1 \partial p_2} \right) = -p_i \frac{\partial f}{\partial q_i} + \kappa \frac{\partial^2 f}{\partial^2 \theta_p}$$

We assume that in the above momentum variable is 'fast', described by angular diffusion in momentum space, and position is 'slow', so that

$$f = f_q \cdot f_p, \quad f_p = \frac{e^{\frac{-\theta_p^2}{4 k t}}}{\sqrt{4\pi \kappa t}}, \qquad f_q = \langle f_q^0(q - p t) \rangle = \int f_q^0(q - p t) f_p d\theta_p$$

Starting with Gaussian f $_{q}^{0}$ it will stay approx. Gaussian with dispersion in transversal direction

$$\sigma_t = \sqrt{\sigma_0^2 + 4 \kappa t u^2}$$

Decision making

