Leonardo, Rapunzel, and the Mathematics of Hair

Raymond E. Goldstein
University of Cambridge
Super-Helices for Predicting the Dynamics of Natural Hair
Bertails, Audoly, Cani, Querleux, Leroy, Lévêque (SIGGRAPH 2006)

Part 3

Animation of a full head of hair
Dear Prof. Goldstein,

I work at Unilever's R&D labs in Port Sunlight in the UK in the Hair Research Division. My personal background being in the Soft Matter Physics area. Some of the challenging technical problems in the Hair Care area depends upon us better understanding hair array statistical mechanics under various conditions. From your publications and your current research interests I see that your research interests lies in quite varied and challenging areas. I was wondering if the area of hair array statistical mechanics may be something you might possibly be interested in? …

…

Samiul Amin

Unilever R&D Port Sunlight, Quarry Road East, Bebington, Wirral CH63 3 JW
The Team

Patrick Warren, Unilever Joe Keller REG Robin Ball, Warwick
Observ. XXXII. Of the Figure of several sorts of Hair, and of the texture of the skin.
Viewing some of the Hairs of my Head with a very good Microscope, I took notice of these particulars:
1. That they were, for the most part, Cylindrical, some of them were somewhat Prismatical, but generally they were very neer round, such as are represented in the second Figure of the Scheme, by the Cylinders EEE. nor could I find any that had sharp angules.

5. That the top when split (which is common in long Hair) appear'd like the end of a stick, beaten till it be all flitter'd, there being not onely two splinters, but sometimes half a score and more.
6. That they were all, as farr as I was able to find, solid Cylindrical bodies, not pervious, like a Cane or Bulrush; nor could I find that they had any Pith, or distinction of Rind, or the like, such as I had observ'd in Horse-hairs, the Bristles of a Cat, the Indian Deer's Hair, &c.
Hair Has a Complex Structure!

- Cuticle
- Cortex
- Cortical Cell
- Macrofibril
- Microfibril
- Keratin coiled-coil

[Diagram showing the structure of hair with labels for cuticle, cortex, cortical cell, macrofibril, microfibril, and keratin coiled-coil.]
Interesting Facts About Hair*

- Adults have 50,000-100,000 head hairs
- Growth of 1 cm/month \(\approx 4 \text{ nm/sec}\) per hair
- Hair density is 1.3 g/cm\(^3\), is elliptical in x-section, with an average major axis diameter \(d \approx 80 \mu\text{m}\) and a linear mass density \(\lambda \approx 65 \mu\text{g/cm} \approx 6.5 \text{ g/km}\)
- Bulk modulus is like nylon, \(E \approx 4 \text{ GPa}\), so its bending modulus is \(A \approx 10^{-8} \text{ Nm}^2\).

Energy density of an approx. horizontal filament,

\[e = \frac{1}{2} Ah_{xx}^2 + \lambda gh \]

implies a characteristic length

\[\ell = (A/\lambda g)^{1/3} \approx 5 \text{ cm} \]

Hence, we introduce the “Rapunzel number”

\[Ra \equiv \frac{L}{\ell} \]

*Courtesy of Susan Welch, Unilever R&D
Hair Has Random Intrinsic Curvatures
“Annealed” vs. “Quenched” Curvatures

Thermal fluctuations

$$\mathcal{E} = \frac{1}{2} \int_0^L dx \left\{ Ah_{xx}^2 + F h_x^2 \right\}$$

$$= \frac{L}{4} \sum_q \left[Aq^4 + F q^2 \right] |\hat{h}(q)|^2$$

Equipartition:

$$\langle |\hat{h}(q)|^2 \rangle = \frac{2k_B T / AL}{(q^4 + \gamma q^2)}$$

Intrinsic curvature

$$\mathcal{E} = \frac{1}{2} \int_0^L dx \left\{ A [h_{xx} - \kappa_0]^2 + F h_x^2 \right\}$$

Euler-Lagrange equation:

$$A [h_{4x} - \kappa_{0,xx}] - F h_{xx} = 0$$

$$\langle |\hat{\kappa_0}(q)|^2 \rangle = \frac{q^4 \langle |\hat{\kappa_0}(q)|^2 \rangle}{(q^4 + \gamma q^2)^2}$$

Projected length deficit:

$$\mathcal{L} - L \sim \left(\frac{k_B T}{4FL_p} \right)^{1/2}$$

$$\mathcal{L} - L \sim \left(\frac{A}{F} \right)^2 \int \frac{dq}{2\pi} q^2 \langle |\hat{\kappa_0}(q)|^2 \rangle$$
Statistics of Random Curvatures

Measurements on 115 hairs from a commercial* switch, using high-resolution stereographic imaging. Filament reconstruction based in part on an algorithm due to W.S. Ryu for \textit{C. elegans} tracking.

*International Hair Importers & Products, Inc. (Glendale, NY)

\textit{PRL} 108, 078101 (2012)
Density Functional Theory of Fiber Bundles

Fiber length density $\rho(\mathbf{r})$
(#/unit area crossing a plane \(\perp\) to fibers)
Local mean orientation of hairs $\mathbf{t}(\mathbf{r})$

Absence of free ends $\rightarrow \nabla \cdot (\rho \mathbf{t}) = 0$

Hypothesis: a *local* energy functional,

$$E = \int d^3 r \rho \left(\frac{1}{2} A \kappa^2 + \varphi(\mathbf{r}) + \langle u \rangle \right)$$

Curvature:
$$\kappa = \left| (\mathbf{t} \cdot \nabla) \mathbf{t} \right|$$

External potential

Pressure:
$$P(\rho) = \rho^2 d\langle u \rangle / d\rho$$

Filament elasticity

Disorder

Pressure
Leonardo’s Observation

“Observe the motion of the surface of the water which resembles that of hair, and has two motions, of which one goes on with the flow of the surface, the other forms the lines of the eddies…”
Application to an Axisymmetric Ponytail

Let $n(r,z)$ be the number of fibres within radius r at depth z.

$$2\pi r \rho \sin \theta = -\frac{\partial n}{\partial z} \quad \& \quad 2\pi r \rho \cos \theta = \frac{\partial n}{\partial r}$$

Ansatz of a self-similar density profile:

$$n(r, z) = N \left[\frac{r}{R(z)} \right]^2 \rightarrow \theta \simeq \frac{r}{R(z)} \frac{R_z}{R(z)}$$

Yields an equivalent single-fibre energy for envelope:

$$\mathcal{E} = N \int_0^L ds \left[\frac{1}{2} \tilde{A} R_{ss}^2 + \frac{1}{2} \tilde{\lambda} g(L - s) R_s^2 + \langle u \rangle \right]$$

Minimization → *The Ponytail Shape Equation*

$$\ell^3 R_{ssss} - (L - s) R_{ss} + R_s - \Pi(R) = 0$$

Average over 5 72° rotations

A well-studied problem (L&L, Audoly & Pomeau)

Van Wyk (1946) – wool
Beckrich et al. (2003) - 2D

PRL 108, 078101 (2012)
Balance of Forces Along Length of a Ponytail

$PRL\ 108,\ 078101\ (2012)$
Testing Equations of State

Away from the clamp, ignore elasticity

\[\Pi(R) \simeq R_s - (L - s)R_{ss} \]

Fixed "launch angle"

Swelling due to pressure

\[\Pi(R) = 0 \]
Empirical Equation of State of Hair

\[\Pi(R) = \Pi_0 \left(1 - \frac{R}{R^*}\right) \]

- cubic
- quartic

\(R \) (cm)

\(\Pi(R) \)

0.0
0.2
0.4
0.6
0.8
1.0

0 1 2 3 4 5 6

PRL 108, 078101 (2012)
Experimentum crucis: Trimming Ponytails

Experiment

Constant Π_0

Graded Π_0

$Ra \approx 5$

$Ra \approx 1$
Interpreting the Equation of State

Consistent with the essential features of “tube models”

Elastic energy density with spontaneous curvature:

\[e = \frac{1}{2} A \left(h_{xx} - \kappa_0 \right)^2 \]

For a parabola:

\[h = \frac{4d}{L^2} x^2 \]

\[d^* = \frac{\kappa_0 L^2}{8} \]

Similar result holds for a helical filament confined to a cylinder:

\[\langle u \rangle \approx \frac{1}{2} A \langle \kappa_0^2 \rangle \left(1 - \frac{a}{a_0} \right)^2 \]

Integrated EOS:

\[\langle u \rangle = \left(\frac{A}{2 \ell^3} \right) \int_R^\infty \Pi(R) \, dR \]

\[a/a_0 \approx 1 - \alpha + \alpha R/R^* \text{ where } \alpha = \sqrt{\Pi_0 R^*/2 \ell^3 \langle \kappa_0^2 \rangle} \approx 0.4 \]

Hence, effective tube is some fraction of the ponytail radius
Ponytail Motion
The Faraday Instability

Read May 12, 1831.
PONYTAIL MOTION*

JOSEPH B. KELLER†

Abstract. A jogger’s ponytail sways from side to side as the jogger runs, although her head does not move from side to side. The jogger’s head just moves up and down, forcing the ponytail to do so also. We show in two ways that this vertical motion is unstable to lateral perturbations. First we treat the ponytail as a rigid pendulum, and then we treat it as a flexible string; in each case, it is hanging from a support which is moving up and down periodically, and we solve the linear equation for small lateral oscillation. The angular displacement of the pendulum and the amplitude of each mode of the string satisfy Hill’s equation. This equation has solutions which grow exponentially in time when the natural frequency of the pendulum, or that of a mode of the string, is close to an integer multiple of half the frequency of oscillation of the support. Then the vertical motion is unstable, and the ponytail sways.
The Maths of a “Parametric Excitation”

A parameter of the problem, the gravitational acceleration \(g = 980 \text{ cm}^2/\text{s} \), becomes time-dependent:

\[
g \rightarrow g + a\omega^2 \cos(\omega t)
\]

Parametrically forced pendulum equation = Hill’s equation (from studies of the moon’s orbit)

large-amplitude motion when

\[
\frac{\omega_0}{\omega} = \frac{k}{2} \quad \text{for} \quad k = 1, 2, 3, \ldots
\]

Natural frequency:

\[
\omega_0 = \sqrt{\frac{3g}{2L}}
\]

Putting this all together, prediction is that lateral motion will occur for jogging about 140 steps/minute. Spot on.
A Controlled Experiment
A Controlled Experiment
The Next Frontier: Tangling

comb
The Amontons-Coulomb Percolation Transition: How a Staple Yarn Transmits Tension and Why Our Clothes Don't Fall Apart