Kellerods and Kelasticas

Alain Goriely, Oxford

Part 1: Reading Joe Keller’s work on elastic rods

Part 2: Geometric stability methods for 1-D problems
Keller’s contributions to rods

- About 18 publications from 1951 to 2010
- 1951: Bowing of Violin Strings
- 2010: Ponytail motion
Keller’s contributions to rods

- About 18 publications from 1951 to 2010

- 1951: Bowing of Violin Strings
- 2010: Ponytail motion

- Roughly divided into
 - Wave propagation
 - Contact problems
 - Optimal/Ideal shapes and Stability
Contact problems

• Post buckling behavior of elastic tubes and rings with opposite sides in contact (1972, with Flaherty & Rubinow)
• Contact problems involving a buckled elastica (1973, with Flaherty)
• Some bubble and contact problems (1980)
Contact problems

Stability of two rings

With Gaetano Napoli Tom Mullin

Grotberg & Jensen 2004 (Heil)
Contact problems

- Ropes in equilibrium (1987, with Maddocks)
Optimal/Ideal shapes

- Strongest column (1960)
- Tallest column (1966, with Niordson)
- Rope of minimum elongation (1984, with Verma)

“To find the curve which by its revolution around an axis determines the column of greatest efficiency”

Clamped

Hinged

Cox 1992
Optimal/Ideal shapes

• Strongest column (1960)
• Tallest column (1966, with Niordson)
• Rope of minimum elongation (1984, with Verma)
Optimal/Ideal shapes

• Strongest column (1960)
• Tallest column (1966, with Niordson)
• Rope of minimum elongation (1984, with Verma)
Optimal/Ideal shapes

• Tendril shape (1984)
Optimal/Ideal shapes

• Mobius band (1993, with Mahadevan)
• Coiling of ropes (1995, with Mahadevan)

Starostin-van der Heijden, 2007
Stability methods for one-dimensional problems (work with Th. Lessinnes)
Dynamics in phase space
Dynamics in phase space
Dynamics in phase space

More generally
Dynamics in phase space

More generally
Dynamics in phase space

More generally

For initial value problems, the geometry of curves in phase space provides information on the stability of solutions.
More generally

For initial value problems, the geometry of curves in phase space provides information on the stability of solutions.

For boundary value problems, equilibrium solutions also lie in phase space.
Dynamics in phase space

More generally

For initial value problems, the geometry of curves in phase space provides information on the stability of solutions.

For boundary value problems, equilibrium solutions also lie in phase space.
Dynamics in phase space

For initial value problems, the geometry of curves in phase space provides information on the stability of solutions.

For boundary value problems, equilibrium solutions also lie in phase space.

Stability?
Example: hanging rod

\[E = \int_0^1 \frac{(\theta' - \sqrt{2Mv})^2}{2} + M \cos \theta \, dx, \quad V = -M \cos \theta. \]

\[\theta'' + M \sin \theta = 0, \quad \theta'(0) = \theta'(1) = \sqrt{2Mv}. \]

Take for instance:

\(v = 1.5 \) and \(M = 81 \)
Problem statement

Define the functional

$$\mathcal{E}[\theta] = \int_a^b \mathcal{L} \left(\theta(s), \theta'(s) \right) \, ds$$

with

$$\mathcal{L}(\theta, \theta') = \frac{(\theta' - A)^2}{2} - V(\theta),$$

$$\theta(a) = \theta_a, \quad \theta(b) = \theta_b$$

or

$$\theta'(a) = \theta'(b) = A.$$

Find a function θ which locally minimises \mathcal{E}: $\mathcal{E}[\theta + \epsilon \tau] > \mathcal{E}[\theta]$
Problem statement

Define the functional

\[\mathcal{E}[\theta] = \int_a^b \mathcal{L} \left(\theta(s), \theta'(s) \right) \, ds \]

with

\[\mathcal{L}(\theta, \theta') = \frac{(\theta' - A)^2}{2} - V(\theta), \]

\[\theta(a) = \theta_a, \quad \theta(b) = \theta_b \]

or

\[\theta'(a) = \theta'(b) = A. \]

Find a function \(\theta \) which locally minimises \(\mathcal{E} : \quad \mathcal{E}[\theta + \epsilon \tau] > \mathcal{E}[\theta] \)

To first order in \(\epsilon \),

\[\delta \mathcal{E}_\theta(\tau) = 0 \quad \forall \tau \in C'([a, b]) \quad \Rightarrow \quad \frac{\partial \mathcal{L}}{\partial \theta} - \frac{d}{ds} \frac{\partial \mathcal{L}}{\partial \theta'} = 0. \]
Problem statement

Define the functional

$$\mathcal{E} [\theta] = \int_a^b \mathcal{L} \left(\theta(s), \theta'(s) \right) \, ds$$

with

$$\mathcal{L}(\theta, \theta') = \frac{(\theta' - A)^2}{2} - V(\theta),$$

where

$$\theta(a) = \theta_a, \quad \theta(b) = \theta_b \quad \text{or} \quad \theta'(a) = \theta'(b) = A.$$

Find a function θ which locally minimises \mathcal{E}: $\mathcal{E}[\theta + \epsilon \tau] > \mathcal{E}[\theta]$.

To first order in ϵ,

$$\delta \mathcal{E}_{\theta}(\tau) = 0 \quad \forall \tau \in C'([a, b]) \quad \Rightarrow \quad \frac{\partial \mathcal{L}}{\partial \theta} - \frac{d}{ds} \frac{\partial \mathcal{L}}{\partial \theta'} = 0.$$

To second order:

$$\delta^2 \mathcal{E}_{\theta}(\tau) > 0 \quad \forall \tau \in C'([a, b])$$
Problem statement

Define the functional

\[E[\theta] = \int_a^b L(\theta(s), \theta'(s)) \, ds \]

with

\[L(\theta, \theta') = \frac{(\theta' - A)^2}{2} - V(\theta), \quad \theta(a) = \theta_a, \quad \theta(b) = \theta_b \]

\[\theta'(a) = \theta'(b) = A. \]

Find a function \(\theta \) which locally minimises \(E \):

\[E[\theta + \epsilon \tau] > E[\theta] \]

To first order in \(\epsilon \),

\[\delta E_\theta(\tau) = 0 \quad \forall \tau \in C'(\mathbb{R}) \quad \Rightarrow \quad \frac{\partial L}{\partial \theta} - \frac{d}{ds} \frac{\partial L}{\partial \theta'} = 0. \]

To second order:

\[\delta^2 E_\theta(\tau) > 0 \quad \forall \tau \in C'(\mathbb{R}) \]

\[C'(\mathbb{R}) \equiv \{ f \in C^1([a, b]) \setminus \{0\} : f'(a) = f'(b) = 0 \} \]
Theorem 2 [Lessinnes&AG, 2017]: Consider a stationary solution of

\[
\mathcal{E}[\theta] = \int_a^b \frac{(\theta'(s) - A)^2}{2} - V(\theta(s)) \, ds \quad \theta'(a) = \theta'(b) = A.
\]

and its corresponding solution in the phase plane \(\gamma : s \in [a, b] \to (\theta(s), \theta'(s)) \)
Theorem 2 [Lessinnes&AG, 2017]: Consider a stationary solution of

\[E[\theta] = \int_a^b \frac{(\theta'(s) - A)^2}{2} - V(\theta(s)) \, ds \quad \theta'(a) = \theta'(b) = A. \]

and its corresponding solution in the phase plane \(\gamma : s \in [a, b] \rightarrow (\theta(s), \theta'(s)) \)

Define \(I = \) the number of max crossing minus the number of min crossing

\[= \text{number of summits} - \text{number of valleys} \]

\[= \text{number of blue lines crossed} - \text{number of red lines crossed} \]
Theorem 2 [Lessinnes&AG, 2017]: Consider a stationary solution of

\[\mathcal{E}[^\theta] = \int_a^b \frac{(\theta'(s) - A)^2}{2} - V(\theta(s)) \, ds \quad \theta'(a) = \theta'(b) = A. \]

and its corresponding solution in the phase plane \(\gamma : s \in [a, b] \rightarrow (\theta(s), \theta'(s)) \)

Define \(I = \) the number of max crossing minus the number of min crossing

= number of summits - number of valleys

= number of blue lines crossed - number of red lines crossed

Then, if \(I > 0 \), the second variation is strictly positive (local minimum=stable)

if \(I < 0 \), the second variation is not positive (not a minimum=unstable)
Theorem 2 [Lessinnes&AG, 2017]: Consider a stationary solution of

\[\mathcal{E}[\theta] = \int_a^b \frac{(\theta'(s) - A)^2}{2} - V(\theta(s)) \, ds \quad \theta'(a) = \theta'(b) = A. \]

and its corresponding solution in the phase plane \(\gamma : s \in [a, b] \to (\theta(s), \theta'(s)) \)

Define \(I = \) the number of max crossing minus the number of min crossing
 = number of summits - number of valleys
 = number of blue lines crossed - number of red lines crossed

Then, if \(I > 0 \), the second variation is strictly positive (local minimum=stable)
if \(I < 0 \), the second variation is not positive \(\) (not a minimum=unstable)

If \(I = 0 \), Define \(J \) as the weighted difference in slopes at the end points

\[J = A(V'(\theta(b)) - V'(\theta(a))) \]
Theorem 2 [Lessinnes&AG, 2017]: Consider a stationary solution of

\[E[\theta] = \int_a^b \frac{(\theta'(s) - A)^2}{2} - V(\theta(s)) \, ds \quad \theta'(a) = \theta'(b) = A. \]

and its corresponding solution in the phase plane \(\gamma : s \in [a, b] \rightarrow (\theta(s), \theta'(s)) \)

Define \(I \) = the number of max crossing minus the number of min crossing
= number of summits - number of valleys
= number of blue lines crossed - number of red lines crossed

Then, if \(I > 0 \), the second variation is strictly positive (local minimum=stable)
if \(I < 0 \), the second variation is not positive (not a minimum=unstable)

If \(I = 0 \), Define \(J \) as the weighted difference in slopes at the end points

\[J = A(V'(\theta(b)) - V'(\theta(a))). \]
Theorem 2 [Lessinnes&AG, 2017]: Consider a stationary solution of

\[
E[\theta] = \int_a^b \frac{(\theta'(s) - A)^2}{2} - V(\theta(s)) \, ds \quad \theta'(a) = \theta'(b) = A.
\]

and its corresponding solution in the phase plane \(\gamma : s \in [a, b] \rightarrow (\theta(s), \theta'(s)) \)

Define \(I = \) the number of max crossing minus the number of min crossing

\[
= \text{number of summits} - \text{number of valleys}
\]

\[
= \text{number of blue lines crossed} - \text{number of red lines crossed}
\]

Then, if \(I > 0 \), the second variation is strictly positive (local minimum=stable)

if \(I < 0 \), the second variation is not positive (not a minimum=unstable)

If \(I = 0 \), Define \(J \) as the weighted difference in slopes at the end points

\[
J = A(V'(\theta(b)) - V'(\theta(a))
\]

Then, if \(J \leq 0 \), unstable

if \(J > 0 \), ? numerical
Example: hanging rod

Stability: Count the number of max-number of min

One max, no min $\Rightarrow I > 0 \Rightarrow$ Stable
I = -1
Unstable

K = 2
Dirichlet
unstable
$I = -1$
Unstable

$K = 2$
Dirichlet
unstable

$I = 1$
Stable

$K = 0$
Dirichlet stable
\(I = 1 \)
Stable

\(K = 2 \)
Dirichlet unstable

\(I = 0 \)
but \(J = 0 \)
Unstable

\(K = 0 \)
Dirichlet stable
I = -1
Unstable
K = 2
Dirichlet
unstable

I = 1
Stable
K = 0
Dirichlet stable

I = 0
but J = 0
Unstable
K = 0
Dirichlet stable

2 more stable cases and 2 more unstable ones (not shown)
Conclusions

- I wish I were as creative as Keller

Geometric Stability (Nonlinearity- 2017) TL, AG
Stability of birods (SIAM J. Appl Math- 2016), TL, AG
Conclusions

- I wish I were as creative as Keller
- If you can draw a solution, you know its stability

Growing rods

Bi-rods

Thomas Lessinnes

Geometric Stability (Nonlinearity- 2017) TL, AG
Stability of birods (SIAM J. Appl Math- 2016), TL, AG
The second variation

\[\delta^2 \mathcal{E}_\theta(\tau) = \int_a^b (\tau')^2 - \frac{d^2V}{d\theta^2} \bigg|_{\theta(s)} \tau^2 \; ds > 0 \quad \forall \tau \in \mathcal{C}'([a, b]) \]

\[
\mathcal{L}(\theta, \theta') = \frac{(\theta' - A)^2}{2} - V(\theta)
\]

\[
\begin{cases}
\theta'' + \frac{dV}{d\theta} = 0 \\
\theta'(a) = \theta'(b) = A.
\end{cases}
\]
The second variation

\[
\delta^2 \mathcal{E}_\theta(\tau) = \int_a^b (\tau')^2 \left. - \frac{d^2V}{d\theta^2} \right|_{\theta(s)} \tau^2 \, ds > 0 \quad \forall \tau \in \mathcal{C}'([a, b])
\]

\[
= \langle \tau | \mathcal{S}_\tau \rangle > 0
\]

\[
\mathcal{L}(\theta, \theta') = \frac{(\theta' - A)^2}{2} - V(\theta)
\]

\[
\begin{cases}
\theta'' + \frac{dV}{d\theta} = 0 \\
\theta'(a) = \theta'(b) = A.
\end{cases}
\]
The second variation

$$\delta^2 \mathcal{E}_\theta(\tau) = \int_a^b (\tau')^2 \left. \frac{d^2 V}{d\theta^2} \right|_{\theta(s)} \tau^2 \ ds > 0 \ \forall \tau \in C'([a, b])$$

$$= \langle \tau | \mathcal{S} \tau \rangle > 0$$

$$\mathcal{S} = -\frac{d^2}{ds^2} + f(s) \quad f(s) = -\left. \frac{d^2 V}{d\theta^2} \right|_{\theta(s)}$$

$$\mathcal{L}(\theta, \theta') = \frac{(\theta' - A)^2}{2} - V(\theta)$$

$$\begin{cases}
\theta'' + \frac{dV}{d\theta} = 0 \\
\theta'(a) = \theta'(b) = A.
\end{cases}$$
The second variation

\[\delta^2 \mathcal{E}_\theta(\tau) = \int_a^b (\tau')^2 - \left. \frac{d^2 V}{d\theta^2} \right|_{\theta(s)} \tau^2 \, ds > 0 \quad \forall \tau \in \mathcal{C}'([a, b]) \]

\[= \langle \tau \mid \mathcal{S}\tau \rangle > 0 \]

\[\mathcal{S} = -\frac{d^2}{ds^2} + f(s) \quad f(s) = -\left. \frac{d^2 V}{d\theta^2} \right|_{\theta(s)} \]

Sturm-Liouville problem.

\[\mathcal{S}\tau = \lambda\tau \]

\[\tau'(a) = \tau'(b) = 0. \]

Stability iff \(\lambda > 0 \)
The second variation

\[\delta^2 \mathcal{E}_\theta(\tau) = \int_a^b (\tau')^2 - \frac{d^2V}{d\theta^2} \bigg|_{\theta(s)} \tau^2 \ ds > 0 \quad \forall \tau \in \mathcal{C}'([a, b]) \]

\[= \langle \tau | S \tau \rangle > 0 \quad \forall \tau \in \mathcal{D}'([a, b]) \]

\[S = -\frac{d^2}{ds^2} + f(s) \quad \quad f(s) = -\frac{d^2V}{d\theta^2} \bigg|_{\theta(s)} \]

Sturm-Liouville problem.

\[\mathcal{L}(\theta, \theta') = \frac{(\theta' - A)^2}{2} - V(\theta) \]

\[\begin{cases} \theta'' + \frac{dV}{d\theta} = 0 \\ \theta'(a) = \theta'(b) = A. \end{cases} \]

Stability iff \(\lambda > 0 \)
The second variation

\[\delta^2 \mathcal{E}_{\theta}(\tau) = \int_a^b (\tau')^2 - \frac{d^2 V}{d\theta^2} \bigg|_{\theta(s)} \tau^2 \ ds > 0 \ \forall \tau \in \mathcal{C}'([a, b])\]

\[= \langle \tau | S \tau \rangle > 0 \ \forall \tau \in \mathcal{D}'([a, b])\]

\[S = -\frac{d^2}{ds^2} + f(s) \quad f(s) = -\frac{d^2 V}{d\theta^2} \bigg|_{\theta(s)}\]

\[\mathcal{L}(\theta, \theta') = \frac{(\theta' - A)^2}{2} - V(\theta)\]

\[\begin{cases}
\theta'' + \frac{dV}{d\theta} = 0 \\
\theta'(a) = \theta'(b) = A.
\end{cases}\]

Sturm-Liouville problem.

\[S \tau = \lambda \tau \]

\[\tau'(a) = \tau'(b) = 0.\]

Stability iff \(\lambda > 0\)

\[\sigma \quad \text{First auxiliary problem}\]

\[S \tau = \lambda \tau \]

\[\tau'(a) = \tau'(\sigma) = 0.\]
The second variation

\[\delta^2 \mathcal{S}_\theta(\tau) = \int_a^b (\tau')^2 - \frac{d^2V}{d\theta^2}\bigg|_{\theta(s)} \tau^2 \ ds > 0 \ \forall \tau \in C'(\mathbb{R}) \]

\[= \langle \tau | \mathcal{S} \tau \rangle > 0 \ \forall \tau \in \mathcal{D}'(\mathbb{R}) \]

\[\mathcal{S} = -\frac{d^2}{ds^2} + f(s) \quad f(s) = -\frac{d^2V}{d\theta^2}\bigg|_{\theta(s)} \]

Sturm-Liouville problem.

\[\mathcal{L}(\theta, \theta') = \frac{(\theta' - A)^2}{2} - V(\theta) \]

\[\begin{cases}
\theta'' + \frac{dV}{d\theta} = 0 \\
\theta'(a) = \theta'(b) = A.
\end{cases} \]

Stability iff \(\lambda > 0 \)

\[\tau'(a) = \tau'(b) = 0. \]

First auxiliary problem

\[\mathcal{S}_\tau = \lambda \tau \]

\[\tau'(a) = \tau'(\sigma) = 0. \]
The second variation

$$\delta^2 \mathcal{E}_\theta(\tau) = \int_a^b (\tau')^2 \left. - \frac{d^2V}{d\tau^2}\right|_{\theta(s)} \tau^2 \, ds > 0 \quad \forall \tau \in C'(\mathbb{R})$$

$$= \langle \tau | S \tau \rangle > 0 \quad \forall \tau \in D'(\mathbb{R})$$

$$S = -\frac{d^2}{ds^2} + f(s) \quad f(s) = -\left. \frac{d^2V}{d\tau^2}\right|_{\theta(s)}$$

Sturm-Liouville problem.

$$\mathcal{L}(\theta, \theta') = \frac{(\theta' - A)^2}{2} - V(\theta)$$

$$\begin{cases}
\theta'' + \frac{dV}{d\theta} = 0 \\
\theta'(a) = \theta'(b) = A.
\end{cases}$$

Stability iff $\lambda > 0$

First auxiliary problem

$$S\tau = \lambda \tau$$

$$\tau'(a) = \tau'(b) = 0.$$
The second variation

\[\delta^2 \mathcal{E}_\theta(\tau) = \int_a^b (\tau')^2 - \frac{d^2V}{d\theta^2} \bigg|_{\theta(s)} \, ds > 0 \quad \forall \tau \in C'(\[a, b]) \]

\[= \langle \tau | S \tau \rangle > 0 \quad \forall \tau \in D'(\[a, b]) \]

\[S = -\frac{d^2}{ds^2} + f(s) \quad f(s) = -\frac{d^2V}{d\theta^2} \bigg|_{\theta(s)} \]

Sturm-Liouville problem.

\[\mathcal{L}(\theta, \theta') = \frac{(\theta' - A)^2}{2} - V(\theta) \]

\[\begin{cases}
\theta'' + \frac{dV}{d\theta} = 0 \\
\theta'(a) = \theta'(b) = A.
\end{cases} \]

Stability iff \(\lambda > 0 \)

First auxiliary problem

\[S \tau = \lambda \tau \]

\[\tau'(a) = \tau'(b) = 0. \]

Conjugate point to \(a \)
Sturm-Liouville problem.

\[S \tau = \lambda \tau \]
\[\tau'(a) = \tau'(b) = 0. \]

Stability iff \(\lambda > 0 \)

First auxiliary problem

\[S \tau = \lambda \tau \]
\[\tau'(a) = \tau'(\sigma) = 0. \]
First auxiliary problem
\[\mathcal{S}\tau = \lambda \tau \]
\[\tau'(a) = \tau'(\sigma) = 0. \]

Second auxiliary problem
\[\mathcal{S}h = 0, \]
\[h(a) = 1, \quad h'(a) = 0. \]

Stability iff \(\lambda > 0 \)
Sturm-Liouville problem.

\[S\tau = \lambda \tau \]

\[\tau'(a) = \tau'(b) = 0. \]

Stability iff \(\lambda > 0 \)

First auxiliary problem

\[S\tau = \lambda \tau \]

\[\tau'(a) = \tau'(\sigma) = 0. \]

Second auxiliary problem

\[Sh = 0, \]

\[h(a) = 1, \ h'(a) = 0 \]

\[\Rightarrow \text{The roots of } h' \text{ are the conjugate points} \]
First auxiliary problem
\[S_T = \lambda T \]
\[\tau'(a) = [\tau'(\sigma)] = 0. \]

Second auxiliary problem
\[S h = 0, \]
\[h(a) = 1, \quad h'(a) = 0. \]

⇒ The roots of \(h' \) are the conjugate points
⇔ The roots of \(\theta'' \) are the conjugate points

Stability iff \(\lambda > 0 \)

Sturm-Liouville problem.
\[S_T = \lambda T \]
\[\tau'(a) = \tau'(b) = 0. \]
First auxiliary problem
\[S\tau = \lambda \tau \]
\[\tau'(a) = [\tau'(\sigma)] = 0. \]

Second auxiliary problem
\[Sh = 0, \]
\[h(a) = 1, \quad h'(a) = 0 \]

→ The roots of \(h' \) are the conjugate points
⇔ The roots of \(\theta'' \) are the conjugate points
⇔ The extrema of \(V \) give the conjugate points

Conjugate point to a

Stability iff \(\lambda > 0 \)

Sturm-Liouville problem.
\[S\tau = \lambda \tau \]
\[\tau'(a) = \tau'(b) = 0. \]