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Executive Summary

Fugro GEOS produce wind and wave design criteria e.g. estimates of
100-year or 10,000-year return period values for wind and wave heights,
linked to tropical cyclones in various regions, including those where such
events occur relatively infrequently. Modelling individual storms by
multiple model runs with small differences in the input parameters and
model physics allows to produce a collection of storm events, and to
predict extremes based on the obtained data sample.

The task is to check the validity of the methods used, to estimate the
confidence level that can be placed in the results of the analysis, and
to suggest ways to improve this level. Two sets of data were presented.
We perform statistical analysis of the data, and show that for NW Aus-
tralia, where tropical cyclones are frequent and good hindcast databases
are available, the data shows good agreement with the theoretical ex-
treme value distribution, thus enabling one to get reliable prediction
for significant wave height maxima. For Bay of Bengal data, where the
number of historical tropical cyclones is very limited, we use quantile
regression analysis to check the reliability of the estimates for maximum
wave heights for individual cyclones.

A number of ways to improve the quality of the forecasts are proposed.
First, we suggest a method for estimating the quantiles of the wind
speeds (or wave heights) at several uniformly distributed points along
the tracks trajectories, using the generated ensembles. This method
is based on Harrell-Davis quantile estimation and allows to estimate
the uncertainty associated with a given number of model runs, and to
add more runs if required. Second, we discuss an optimal strategy for
adding runs. Third, we propose a statistical model for the generation
of synthetic tropical cyclone tracks, which is an inexpensive method to
generate a large number of tropical cyclones in the basin of interest,
where the hindcast data is insufficient.
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Introduction and problem statement

Calculating return period values (e.g. estimates of 100-year or 10,000-year
maximum wind or wave height) for tropical cyclones is a difficult task, espe-
cially in regions where such events occur relatively infrequently. Meanwhile,
such estimates are crucial for risk analysis for offshore sites. Methods used
are different for regions where tropical cyclones or hurricanes are frequent,
and for those where they occur relatively infrequently. In the former case,
the estimates are based on existing hindcast databases: data is taken from
neighbouring grid points, and then the extreme values analysis is used to
predict the extremes. In the latter case, there are no existing hindcast
databases available, and the task becomes much more difficult.

The current operational research approach is to model individual storms,
although getting both the storm track and intensity to match historical
data is not easy. Currently one produces multiple model runs with small
differences in the input parameters and model physics in order to produce a
collection (ensemble) of plausible storm events. These “small differences” in
input parameters and model physics can change both the track and inten-
sity of the modelled storm, any of which could be considered as a possible
representation of a cyclone in the region. However, these so-called small
differences in the input parameters may have unknown effects to the track
and intensity depending upon the model.

The current method for deriving extreme wave criteria in regions where
cyclones are infrequent is:

Gathering the cyclone data for the region in question over the last
45 years. There is good satellite data since 1970, and there may have
been, say, 6-10 severe storms in the area of interest during that period.

2. For each of those storms, running simulations of it with numbers
of combinations of different microphysics models, different boundary
layer models, different sea surface models etc. The simulations of the
storm area take external conditions from a large-scale atmospheric
model, interpolated to give values on the grid size of the storm simu-
lation. The microphysics models are different ways of representing the
homogenised effects of the physics at sub-grid scale. The boundary
layer models are, similarly, different ways of representing the effects of
the atmospheric boundary layers. They include, for instance, models
of enthalpy transfer across the air-sea interface.

3. Using each of those simulated storms to predict wave height at the
specified location. This is done using a standard wind-wave model.

4. Using that set of data to estimate the 1-in-100-year maximum wave
height at the location.

First, we need to find out what confidence can be placed in the results of
this analysis, and how that confidence level depends on the number and
the type of variations in step 2. Two sets of data were presented. The



first set has maximal values of significant wave heights for 7 points off the
northwestern coast of Australia, where a large hindcast database of historic
tropical cyclones is available. The second set refers to Bay of Bengal, where
tropical cyclones are rare (although they can be quite severe and dangerous).
The data shows wave height evolution vs time at the target point in Bay
of Bengal. In the next section, we perform statistical analysis of the two
sets of data, in order to find out whether the extreme value estimates are
statistically reliable. In section 3, we propose a number of solutions: a
method to estimate whether the number of model runs is sufficient for a
reliable statistical estimate, based on Harrell-Davis quantile analysis, a way
to efficiently add model runs with optimal use of available computational
resources, and a synthetic tropical cyclone generator. Section 4 contains
conclusions.

2 Data analysis

2.1

North-West Australia - extreme value analysis
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Figure 1: The data consists of maximal values of significant wave
heights for 76 tropical cyclones at 7 points.

The first set of data contains maximal values of wind speed and significant
wave height for 76 tropical cyclones. Data is pooled from 7 neighbouring
grid points (figure 1). This data is used to predict the maximal values of
wind speed and wave height with a specified probability, or return period.

In order to assess the quality of the data and the reliability of the prediction,
in figure 2 we plot histograms of significant wave height maxima for all 7
points. Theoretically, the probability density function for the extreme value
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Figure 2: Frequency distributions of maximal wave heights at 7 grid
points from North-West Australia hindcast database (histograms), and
the theoretical probability density function for the extreme value dis-
tribution (red curves).

distribution with location parameter p and scale parameter o, suitable for



modelling the maximum value, has the form

T exp(— exp(———F

)

y = flz|p,0) =0 exp(—

Given the distribution of maximum H, from the data, we can fit it to
the theoretical curve, test the quality of the data, and use the obtained
continuous p.d.f. to model the probability of extreme Hj (say, the 100 year
wave).

In figure 2, the curve for extreme value distribution p.d.f. is shown along
with the histograms. The distribution functions have been normalized so
that their integral corresponds to the total area of each histogram. We see
that the distribution of maxima corresponds to the theoretical curves in
each case rather well, so that a reliable prediction of the maxima with the
specified probability can be made, based on the obtained p.d.f.

Bay of Bengal - basic data analysis
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Figure 3: Wave height evolution vs time at the target point in Bay of
Bengal (4 tropical cyclones, 11 realisations each).

For Bay of Bengal, the data consists of the wave height evolution for 4
tropical cyclones, obtained with simulations of atmospheric and wave mod-
els with varying parameters to produce an ensemble of 11 realisations. All
realisations for all 4 cases are shown in figure 3.
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Figure 4: Maxima of wave heights in time vs realisation number.

We start the data analysis with looking at the maxima of all curves for all
realisations (plotted in figure 4). These maxima give a rough indication of
the maximal wave height that occurs at the target point. However, such
basic analysis does not allow to get a measure of the statistical reliability
of the maxima, or to produce a correct statistical estimate of return values
for significant wave height. In fact, while working with random functions,
it makes more sense to use quantiles instead of extremum values [1]. Quan-
tile regression estimates are more robust against outliers in the response
measurements than the maxima, and are often used for predicting relash-
ionships between variables. The quantile regression analysis is performed in
the next subsection.

2.3 Bay of Bengal - quantile regression analysis

In order to check the quality of the data, we use the quantile regression anal-
ysis, estimating the conditional quantile (in this case, 90%) of the response
variable. This estimate is robust agains outliers and is useful for estimat-
ing the statistical envelope of response variables, together with confidence
intervals.

To perform the analysis, we use the opensource statistics toolbox for Matlab
and Octave by Anders Holtsberg
(http://www.maths.lth.se/matstat /stixbox/Contents.html)

In figure 5, we show the 90 % quantiles, obtained using the function “quan-
tile” of the toolbox (note that the standard Matlab function “quantile” gives
the same result), and the 95 % confidence intervals for the 90 % quantile,
obtained using the function “ciquant”. There are a few ways of estimating
confidence intervals for quantiles; the toolbox used employs the binomial
distribution method [2]. This result demonstrates that although we have
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Figure 5: 90 % percentile fits for wave height vs time (blue solid curves)
and 95 % confidence intervals for the percentile (dotted curves).

only 11 realisations of the model, the statistical estimate of maximal wave
heights for one individual tropical cyclone appears to be quite reliable (al-
though case 4, where there is considerable uncertainty in the ensemble of
11 realisations, somewhat stands out). In the next section, we develop a
systematic approach, based on Harrell-Davis quantile estimation, to find
the number of realisations required to keep statistical errors within speci-
fied limits. Then, in 3.2, we suggest an optimal strategy for increasing the
number of realisations using limited computational resources. The main
difficulty, however, lies in the insuffient data on tropical cyclones in the re-
gion. It appears reasonable to build a generator of synthetic cyclonic tracks
to facilitate the statistical analysis. This is discussed in section 3.3.

3 Proposed solutions

3.1 Applying Harrell-Davis quantile estimation

We first wish to note that for the purposes of our research we did not have
access to the various models and a description of how the microphysics
variables were varied in order to generate the ensemble members. However,
given the current ensemble member data that we have, we suggest to apply
the Harrell-Davis estimator as a potential solution for having a measure of



confidence on the number of ensembles to run given how certain one would
like to be about a certain location.

Vertical Axis

Figure 6: Illustration of the Harrell-Davis estimation process.

Here we describe a method for estimating the quantiles of the wind speeds
at several uniformly distributed points along the tracks trajectories, using
the generated ensembles. The first step in this method is, for each ensem-
ble, to draw a straight line from the common genesis point to each of the
corresponding termination points of the ensembles. Next, one calculates
the angle 6 between each of the plotted line and the y-axis centred on the
longitude of the starting common genesis so we have a vector of angles
0 = (04,...,0,), where n is the number of ensembles. The next step is to
take the mean of this vector, 0. The we rotate the frame of reference by the
angle 180° — # by using the traditional 2D rotation matrix, (R(f) below).

R(O) = {cose —sine]

sinf cos@

Next, we divide uniformly the reference line, i.e. the horizontal line, at each
uniformly spaced point an orthogonal line is draw. This will give a wind
speed for each ensemble at that point in space. One must note that the
implementation will require an interpolation method in order to have an
estimate of the wind speed at the intersection with each orthogonal line.
With each of these samples of wind speeds X; = (X;1,...,X;,), one can
perform a Harrell-Davis quantile estimation at each uniformly distributed
point using the Hmisc package in R. This gives an estimate of the quantile
and a standard error with very few points of data.
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If one plots this method and plots the analysis as in figure 6, and the
location of interest falls within one of the ‘fuzzy balls’ or the standard error
of the estimate of the quantile, it indicates that if the client wishes to be
more certain, more ensemble runs are required to reduce the error in the
estimation.

3.2 Optimal strategy for adding realisations
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Figure 7: Simulated wind speeds from four observed cyclones (four
plots) for three selected initial settings (three colours).

The Harrell-Davis estimator approached in this way gives an estimate of the
uncertainty surrounding the number ensembles that is required. However,
these ensembles are computationally expensive and running more ensembles
takes time. But since our interest is only in the maximum, the question
becomes how do we identify a pair of an observed cyclone and an initial
setting that will produce the maximum wind speed, or wave height? If this
is possible we need only run one simulation and not waste our resources on
the ones that will not.

Let us now discuss this problem using wind speed as an example. The
simulated wind speed is a function of the wind speed of the observed cyclone
and the initial setting used to simulate it. The simulated wind speed is the
speed at the eye of the cyclone so it then needs to be extrapolated using an
appropriate method to estimate the speed at point P.
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Figure 8: Simulated wind speeds from the same four observed cyclones
(four colours) for each of four inital settings (four plots).

To identify an observed cyclone and an initial setting that will produce the
maximum wind speed at P requires the knowledge of their effects on the
simulated wind speed.

Figure 7 shows the wind speeds of three selected initial settings, ranging
in three different colours, simulated from four selected cyclones. It is clear
that the maximum wind speed in each cyclone is produced by a different
coloured line (initial setting). Figure 8 shows the wind speeds simulated
from the four cyclones, ranging in four different colours, for four selected
initial settings. Even though the maximum wind speed is always achieved by
the black event, the second largest comes from different cyclones depending
on the initial setting chosen. So if we had used cyclones of similar sizes for
simulation the maximum wind speed may have come from different events.
Hence the cyclones and initial settings are interdependent. This means it is
impossible to identify one pair of an observed cyclone and an initial setting
to simulate the maximum wind speed.

This means we need to simulate as many as possible, starting with the max-
imum observed cyclone (after adjusted for P) and so on until the available
resources are exhausted. It may not be necessary to simulate from all initial
settings if it turns out that some of them always underestimate the speed.



3.3

Synthetic tropical cyclone generator

The main difficulty with the methods currently used in practice lies in the
fact that the number of tropical cyclones is insufficient in some areas and
does not allow to build reliable statistics. One may wish to have a return
period distribution (for wind speed for example) for any spatial location in
the observation window.
One way to do this is to use a statistical model for the generation of synthetic
tropical cyclone tracks across the basin of interest, here the Bay of Bengal.
This method is inexpensive and can be used to estimate a wind distribution
at a particular location by reconstructing the wind profiles.
A general resampling synthetic tropical cyclone method involves three main
models. The first model is the genesis model. This will generate the starting
points of the synthetic tropical cyclones. The second propagates the syn-
thetic tracks from genesis to lysis. This is generally constructed by looking
at particular characteristics, for example direction, translation speed and
maximum wind speed. At the initial step, one would sample from local
distributions of the characteristics to gain an initial value. Then one can
calculate the next point of the track and then sample from the local changes
in those characteristics and so on for the next step. At each of these steps
the model must decide whether the track terminates or not, this is the third
model. A method for the termination of the tracks can be modelled using
various parameters, for example, wind speed, an indicator if the cyclone is
over land or not etc.. Below we outline one possible approach to simulate
synthetic tropical cyclone tracks.
A method for the generation of synthetic tracks and calculation
of synthetic tracks based on model in [4].

Identify the target distribution, for example the wave height distribu-

tion at a particular location.

2. Data analysis. Collecting the appropriate data for the proposed model
and manipulate in order to get it into a usable format for the model.

3. Initiate the model by calculating appropriate estimators, for example
the intensity estimator for the spatial Poisson process.

4. Select a generated cyclogenesis point. Construct local empirical cdfs
for initial characteristics (direction, translation speed, maximum wind
speed). Then, using a sampling method, for example inverse transform
sampling, to sample a realisation of each characteristic.

5. The next location of the tropical cyclone can be computed by the
sampled changes in the values of the characteristics.

6. Apply the termination model to determine if the track terminates at
this point or not. If the track terminates then retern to step 4 if any
cyclogenesis points remain, if not the algorithm terminates. Otherwise
return to step 5.

One can generate a large number of tropical cyclones in the basin of inter-
est and reconstruct the wind profiles of those tropical cyclones in order to
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Figure 9: Illustration of historical vs. synthetic tracks in the western
North Pacific [3].

construct a wind distribution at any location of interest. One can use this
distribution to analyse potential extreme wind and associated wave events.
Wind profiles can be reconstructed in numerous ways, for example via a
modified Rankine vortex. However the type of model used to reconstruct
the wind profile can have an affect on the resulting return period values [3].

4 Conclusions

e The quantile regression analysis shows that the maxima of significant
wave height for individual tropical cyclone events can be estimated
with a certain degree of reliability, even though we have got only 11
realizations.

e We propose a method for estimating the sufficiency of the number of
realisations, based on the Harrell-Davis quantile estimation

e However, since the analysis is based on hindcast models, the quality
of the extreme wave height forecast is dependent on the available his-
torical data on the tracks and intensities of tropical cyclones affecting
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the region of interest.

Reliable and complete data on tropical cyclones tracks are insufficient
for reliable statistical conclusions. This is especially true for Bay of
Bengal, where tropical cyclones are relatively rare but can be quite
severe.

An alternative approach is to enlarge the sample of cyclones that can
be used to drive the numerical models. This involves generating syn-
thetic cyclones whose statistical characteristics simulate those of the
population of real cyclones.

At present, stochastic models for the simulation of tropical cyclone
tracks are available for various oceanic regions. These models rely on
the historical track data available. Complex meteorological aspects
of tropical cyclone movement are simplified, creating the possibility
for the simulation of large numbers of synthetic cyclone tracks. These
models are general enough to be transferred to other ocean basins with
only minor adjustments [4].

We suggest a synthetic tropical cyclone generator, which can be used
to generate a large number of tropical cyclones in the basin of interest
and reconstruct the wind profiles of those tropical cyclones in order to
construct a wind distribution at any location of interest.
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