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The group focused on a model problem of idealised moist air convection in a single column

of atmosphere. Height, temperature and moisture variables were chosen to simplify the

mathematical representation (along the lines of the Boussinesq approximation in a height

variable defined in terms of pressure). This allowed exact simple solutions of the numerical

and partial differential equation problems to be found. By examining these, we identify

column behaviour, stability issues and explore the feasibility of a more general solution

process.
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1. Introduction

Atmospheric models used for weather and climate prediction use the classical compress-

ible Navier-Stokes equations, laws of thermodynamics, and laws governing phase changes,

radiation and surface fluxes. However, the exact solution of these equations is not compu-

tationally feasible, and the equations have to be averaged in space and time before being

solved. It is then necessary to design sub-grid models which represent the averaged effects

of the unresolved small scales on the resolved solution.

A particularly difficult situation arises with cumulus convection. This is responsible for

much of the severe weather outside the tropics, and is the main driver of the tropical cir-

culation which is a fundamental part of the climate system. Cumulus convection can only

be directly represented in models with a horizontal grid of at most one or two kilometres.

This is not affordable in global climate models at present. The sub-grid modelling of con-

vection is very difficult because of the jump-like nonlinearity of the moisture-heat exchange

processes involved. Such a model has to build in the effects of the large-scale solution on the

convection.

In order to understand these effective large-scale constraints, and thus improve the sub-

grid models, it is useful to consider the evolution of a single column of moist air. It is well-

known by practising weather forecasters that the occurrence and intensity of convection can

be predicted by studying the temperature and moisture profiles in such a column together

with knowledge of the external forcing, e.g. see [5], chapter 4. The challenge set for the

study group was to make a mathematically rigorous version of a single column model which

behaved in a way that agreed with the observed behaviour. Such a model can then be

used to validate the sub-grid models in daily forecasts, and potentially to improve them.

The existence of a rigorous model which describes at least the most important part of

the convective process would also indicate high potential deterministic predictability in a

situation where deterministic predictions are not yet consistently successful.

We therefore study the stability of a moist vertical column of air in the presence of ex-

ternal forcing, such as the bodily lifting of the column. Stability requires that the potential

temperature θ must increase as a function of the height z (in suitably scaled pressure units).

But the physics also requires a constraint holds that the water vapour q , i.e. the moisture

carried by the air, must be less than a critical level denoted by Qsat(θ, z) . If not, the excess

vapour in an air parcel then condenses and releases heat to the air parcel, thus increasing

the potential temperature, and hence possibly changing the stability of the parcel. For sim-

plicity, we treat all condensation as vapour to rain, ignoring things like ice/snow mixtures,

and allow the rain to fall out of the column.

2. Physical constraints in convection modelling

Some key features of the local convection problem are as follows.
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• Convective processes happen in a shorter time-scale than that of the horizontal dynam-

ics, and are usually localized in the horizontal scale.

• Given a parcel, there are three constraints for potential temperature θ , humidity q

and air mass, as the parcel moves vertically.

(i) If the parcel stays unsaturated, then θ, q and its air mass are conserved respectively.

(ii) If the parcel stays saturated, then its air mass is conserved. The second constraint

simply is q = Qsat(θ, z) . The third constraint is that the “moist potential temperature”

θM := θ + Lq

is conserved. Here, L is a physical constant which gives the latent heat of conversion released

to the air parcel when some of the water vapour condenses to precipitation (cloud, rain, ice

or some mixture), and Qsat(θ, z) is a given function of θ, z determined by the physical

properties of the air and its water vapour.

The conditions (i), (ii) arise from conservation in both the physical and mathematical

senses of moist thermal energy (measured by the suitably defined potential temperature

which is related to the entropy), of moisture as either water vapour or cloud/rain, and of air

mass, all defined on the air parcels as they move.

Definition 1. Given the saturation specific humidity Qsat(θ, z) : R2 7→ R as a smoothly

differentiable function of θ, z satisfying

(2.1)
∂Qsat

∂θ
> 0 and

∂Qsat

∂z
< 0,

the “moist adiabat” is a formula associated with a given parcel (with saturated status) and

represented by a curve in the (θ, z) plane, which obeys the above constraint (ii), i.e.

(2.2) θM = constant = θ + Lq = θ + LQsat(θ, z).

The monotonicity conditions (2.1) guarantee that there exist two smoothly differentiable

functions Zad(·, ·) , Θad(·, ·) so that the above moist adiabat formula is equivalent to

z = Zad(θ, θM) ⇐⇒ θ = Θad(z, θM).

In other words, a moist adiabat curve is the level set curve of function θ + LQsat(θ, z) =

θM = constant in the (θ, z) plane, which is identical to the graph of z = Zad(θ, θM) , and of

θ = Θad(z, θM) , with constant θM .

Following this definition and applying the chain rule, we obtain:

Proposition 2. On the moist adiabat with a constant θM ,

∂Zad

∂θ
=

1 + L∂Qsat

∂θ

−L∂Qsat

∂z

and
∂Zad

∂θ

∂Θad

∂z
= 1.
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We can combine this with (2.1) to immediately have, with a constant θM ,

(2.3)
∂Θad

∂z
> 0 and

∂Zad

∂θ
> 0.

Now, consider that θM is defined by the parcel’s initial configuration and remains constant

during the convection process, for both unsaturated and saturated parcels. Then, we can

unify these two cases to give a relation between the initial (subscript “in”) and final (subscript

“fi”) configurations of a given dry/wet parcel experiencing a rising/lowering displacement

from zin to zfi ,

θfi = Θdisp(θin, qin, zfi) := max {θin, Θad(zfi, θin + Lqin)} ,(2.4)

Lqfi = θin + Lqin − θfi.(2.5)

The definition of Θdisp is regardless of the stability of these configurations, and can be used

to describe virtual displacement in the variational formulation. Several remarks are in order.

1. The use of moist adiabat implies θM = θin + Lqin = θfi + Lqfi for both wet/dry cases.

2. We impose the maximum since by (2.1) and (2.2), having θfi < Θad(zfi, θ
M) would mean

θfi < Θad(zfi, θ
M) =⇒ LQsat(θfi, zfi) < LQsat

(
Θad(zfi, θ

M), zfi

)
= θM −Θad(zfi, θ

M) < θM − θfi = Lqfi

i.e. Qsat(θfi, zfi) < qfi which would be unphysical. Interestingly, if we replace all occurrences

of < with = above, the calculation still holds; and likewise if we replace all occurrences of

< with > above. Thus, we obtain an equivalent saturation condition,

(2.6) sign
(
q −Qsat(θ, z)

)
= sign

(
Θad(z, θM)− θ

)
where θM = θ + Lq.

3. The use of maximum above also means θfi ≥ θin , namely, only a rising parcel can pos-

sibly increase temperature upon condensation of some of its water vapour. Re-evaporation

is neglected, and its modelling is possible only if cloud information is included. Our model

is time irreversible.

Convective instability and monotonicity of Qsat . Convective instability is tied to the

key properties that Qsat increases with θ and decreases with height z (c.f. (2.1)). First,

the column is unstable whenever θ is not monotonically increasing in z . Further, even

the monotonicity holds, we still need to check the saturation condition. When the actual

humidity of a parcel reaches the saturation level q = Qsat , condensation takes place and

latent heat is released, resulting in increase in θ . In turn, the parcel is lifted up by buoyancy.

Then, one can use the monotonicity of Qsat in (2.1) and Proposition 2 to show that following

any rising, saturated parcel, the Lagrangian derivative DQsat

Dt
< 0. This decrease in Qsat will

encourge more condensation and thus release of more latent heat, resulting in a positive

feedback mechanism for a saturated parcel to rise.
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For the parcel to continue rising (i.e. convective instability) however, we need more. If θ

is differentiable in z , we propose two conditions related to convective instability,

“triggering condition” :
∂Θad

∂z
(z, θM) ≥ ∂θ

∂z
and q = Qsat(θ, z),(2.7)

“stopping condition” :
∂Θad

∂z
(z, θM) <

∂θ

∂z
,(2.8)

the latter of which defines the bottom of an “inversion layer” or is near the tropopause. Note

that the inversion layer can be dynamically changing with time and actually dependent on

the θM of each parcel.

These two conditions are consistent with the maximisation of
∫
zθ dz over all rearrange-

ments of the parcels, i.e. measure-preserving maps, which is carried out in the algorithm

below. The conditions can be shown using a variational argument with the perturbation

being swapping of two small measures/blocks of parcels. In the general situation where θ is

not necessarily differentiable, the conditions (2.7), (2.8) are applied on small blocks of air at

different heights (locally or globally) by comparing their temperatures.

3. Settings of the model problem

Consider a single vertical column that is horizontally uniform. It is being uniformly lifted

on a longer timescale than that of the convective adjustment.

Assumption 1. The column responds/makes adjustment, according to the physical envi-

ronment’s thermodynamic change, but any feedback to the environment is neglected.

Assumption 2. For simplicity, physical processes such as background thermal radiation and

ice/water re-evaporation are neglected so that a given parcel’s humidity q never increases,

and so here its θ never decreases.

Assumption 3. There are no mass/heat/water vapor fluxes at the top and bottom bound-

aries.

The column may be rising as a whole at a given speed and still satisfying the no flux

boundary conditions. This is a simplified model for a cold front wedging at a constant rate

under a column of moist air. The wedging is at a slower rate than the convective adjustment.

By using a co-moving frame, the spatial domain is fixed as z ∈ [0, 1] . Then, the term

(−αt) in (3.9) accounts for the column’s actual upward motion.

Under the hydrostatic assumption, for the single column model, the actual height and

pressure are monotonically linked. Then, we use Hoskins’ pseudo-height z ,

z :=
{

1−
( p
p0

)R/cp}
za

so that the (environmental) pressure variable becomes implicit. The constant za > 1.

For simplicity and to provide explicit examples, we adopt an accurate approximation ([4])

(3.9) Qsat(θ, z) = A0 exp (r [θ − βz − θPBL − αt]) ,
5



where A0, r, β, θPBL and α are constants. The Zad function of Definition 1 is then explicitly

given as

(3.10) Zad(θ, θM) =
1

β

[
θ − 1

r
ln
θM − θ
LA0

− θPBL − αt
]
.

In light of Proposition 2, we have that on the moist adiabat with constant θM ,

(3.11)
∂Zad

∂θ
=

1

β

[
1 +

1

r (θM − θ)

]
=

1

β

[
1 +

1

r LQsat

]
.

Therefore, the threshold used in instability/stability conditions (2.7), (2.8) is explicitly

(3.12)
∂Θad

∂z
(z, θM) = β

[
1 +

1

r LQsat

]−1

.

Rearrangement/adjustment problem. Based on Lock and Norbury [4] and Goldman’s

MSc thesis [2], we make

Assumption 4. The column responds/makes adjustment at a much shorter time scale

compared to the environment’s thermodynamic change. So we do not model the actual

dynamics, i.e. the acceleration and deceleration of a saturated parcel rising due to buoyancy.

Mathematically, the response time is infinitesimal.

Main idea: the potential energy
∫
zθ dz is maximised in a way consistent with the moist

adiabat. See the next two sections.

Remark 3. The PDEs (7), (8) in Goldman’s thesis [2] are basically the same as Definition

1 of “moist adiabat”. That result was regarding the existence of weak solutions to (7), (8) in

[2] under some stability condition – no uniqueness was proven. The maximisation of
∫
zθ dz

was not explicitly stated in the theorems there, but in the construction of weak solutions,

the proof of [2] uses a rearrangement strategy to enforce a certain monotonicity condition

which, combined with his stability condition, may just maximize
∫
zθ dz . Goldman claims

his version of the stability condition is consistent with that of Cullen & Purser [1].

4. Sorting algorithm

Recall constraints (i), (ii) and Definition 1 of “moist adiabat”.

Dependent variables are θP, qP, zP with subscript P indicating they are Lagrangian vari-

ables on a parcel. These variables are subject to either the unsaturated constraint, i.e. θP, qP

remain constant, or the saturated constraint, i.e. qP = Qsat(θP, zP) and θP = Θad(zP, θ
M
P ) .

Mass is conserved due to the fact that the algorithm simply rearranges the discrete blocks

of parcels.

The saturation function Qsat is given by (3.9). For now consider t = 0.

The numerical sorting algorithm assumes that the atmosphere is divided into N parcels

with initial temperatures θ0
1, θ

0
2, ..., θ

0
N and moistures q0

1, q
0
2, ..., q

0
N (some of which are at

saturation) at the heights z1, z2, ..., zN . For each parcel the combination θMi = θ̂i + Lq̂i =
6



θ0
i + Lq0

i is conserved during the rearrangement. Here the hat on the variables denotes

the value of θP , qP and zP during the sort. Thus if the moisture level changes due to

condensation, then the temperature increases. With the function defined in (2.4) that unifies

the dry and wet cases, we can write

θ̂i = Θdisp(θ0
i , q

0
i , ẑi) and q̂i = (θ0

i + Lq0
i − θ̂i)/L.

The algorithm works by starting at height zN . It then temporarily lifts every parcel below

this height up to z = zN with the would-be θ̂i determined by the above formula. Once this

is done for all parcels below zN , the parcel with the largest temperature (e.g. labelled m)

is chosen to be at height zN . Parcel m is then eliminated from the sort. Parcels previously

labelled (m+ 1) to N have their heights lowered by one grid.

The code then moves to zN−1 and repeats until it reaches z1 .

Results of this code are presented in Figure 1 for the initial configuration and in Figure 2

for the final configuration. We choose the following parameters

zi =
i− 0.5

N
i = 1, ..., N,

and initial temperature configuration

θ0
i = 300 exp

(zi
6

)
,

where

A0 = 0.025, r = 0.09, β = 120, θPBL = 300,

in Qsat . The value of L = 2400. The initial moisture levels are taken to be

q0
i = min

{
1,

5

4
+

1

2
sin(8πzi)

}
Qsat(θ

0
i , zi) .

The results in Figure 2 show that the numerical sorting algorithm appears to converge as N

is increased. At this stage the visual convergence is sufficient, but more detailed numerical

analysis is required to confirm this. As N increases the system moves towards that of

unsaturated air for z . 0.4 and approximately a region of saturated air parcels above this.

The highly oscillatory behaviour of moisture in Plot (f) may suggest that as N → ∞ , the

algorithm converges to some kind of transport plan rather than a transport map. Also note

that the final temperature distribution contains step jumps in the temperature for N = 50

and 500, but these get smoothed out as the number of parcels increases to N = 5000.

However, the final temperature distribution and its smoothness depend on the given initial

data.

5. Theory of optimal transport

For SG motion in the x − z plane ([3]), a saturated parcel moves along an adiabatic

surface and conserves the x - momentum (since there is no movement in the y -direction).

If the energy minimisation property in the dry case also applies here, then the total energy
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(
−
∫
zθ dz+kinetic energy

)
is minimised. But since the kinetic energy is constant, we must

have that
∫
zθ dz is maximized.

Back to the column problem. For the transport map, it is represented by a function

σ : [0, 1] 7→ [0, 1] which preserves the Lebesgue measure, i.e., for any 0 ≤ a ≤ b ≤ 1,∫ b

a

σ(z) dz = b− a.

Let M be the collection of all such measure preserving maps. Recall Θdisp defined in (2.4).

Then we look for (maybe more than one) maximizer

σ∗ = arg max
σ∈M

{∫ 1

0

σ(z) Θdisp(θ(z), q(z), σ(z)) dz
}
.

For the transport plan, it is represented by a (generalized) nonnegative function K(z, z′)

defined on [0, 1] × [0, 1] . It quantifies the percentage of parcels moved from z to z′ . It

preserves things in the sense of marginal probability measures,∫ 1

0

K(z, z′) dz =

∫ 1

0

K(z, z′) dz′ = 1.

The transport map σ(z) is a special case K(z, z′) = δ(z′ − σ(z)) . So, in general, K(·, ·) is

a measure (nonnegative distribution) defined on [0, 1]× [0, 1] .

Let P be the collection of all such measure preserving plans. Then we look for (maybe

more than one) maximizer

K∗ = arg max
K∈P

{∫ 1

0

∫ 1

0

z′K(z, z′) Θdisp(θ(z), q(z), z′) dz dz′
}
.

6. Conclusion

We constructed a numerical algorithm whose solutions converged to exact solutions that we

found for some idealised test cases. But we also found that the numerical solutions for certain

initial moisture and temperature data appeared to converge to “new” types of solutions which

correspond to transport plans (rather than maps) for the variational problems. These new

solutions are extremely challenging for conventional fluid dynamics codes because they are

highly, and discontinuously, oscillatory and vary rapidly from wetter to drier layers. The

sorting algorithm appeared to find that different solutions may exist for the same initial data

and this suggests further work in how to devise computer code in practical forecasting.
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Figure 1. Plot of (a0) is the initial temperature distribution θ0
i (zi) and (b0)

is the initial moisture distribution q0
i (zi) (blue line) for N = 5000 parcels. In

Plot (b0) the red line denotes Qsat(θ
0
i , zi) .
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Figure 2. Plots of (a), (c), (e) are the final temperature distribution θi(zi)

and (b), (d), (f) are the final moisture distribution qi(zi) where the red curves

denote the new Qsat . The number of parcels is: N = 50 in (a), (b); N = 500

in (c), (d); and N = 5000 in (e), (f).
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