Logical Foundations for Classical Encryption and Quantum Teleportation

Jamie Vicary Centre for Quantum Technologies, University of Singapore and Department of Computer Science, University of Oxford

Post-Quantum Research: Identifying Future Challenges and Directions Isaac Newton Institute, University of Cambridge 9 May 2014

Encrypted communication

There is a deep analogy between encryption and teleportation:

New idea. We can make this precise using *geometrical* mathematics.

There is a deep analogy between encryption and teleportation:

New idea. We can make this precise using geometrical mathematics.

Nice result. There is a general classical-to-quantum construction.

There is a deep analogy between encryption and teleportation:

New idea. We can make this precise using *geometrical* mathematics.

Nice result. There is a general classical-to-quantum construction.

Part of the *categorical quantum computing* programme launched by Abramsky and Coecke in 2004.

Consider the following equation, where σ is a bipartite state preparation and σ^* is the corresponding bipartite postselection:

Consider the following equation, where σ is a bipartite state preparation and σ^* is the corresponding bipartite postselection:

We change notation and use **topological strings**.

Consider the following equation, where σ is a bipartite state preparation and σ^* is the corresponding bipartite postselection:

We change notation and use topological strings.

We can investigate consequences of this equation in different settings.

▶ Quantum theory.

The state σ is maximally entangled: $|\sigma\rangle = |00\rangle + |11\rangle$

Consider the following equation, where σ is a bipartite state preparation and σ^* is the corresponding bipartite postselection:

We change notation and use **topological strings**.

We can investigate consequences of this equation in different settings.

▶ Quantum theory.

The state σ is maximally entangled: $|\sigma\rangle = |00\rangle + |11\rangle$

► Classical computation.

The state σ is perfectly correlated: $\sigma = \{00\} \cup \{11\}$.

Surfaces and logic

We now think about basic properties of copying, comparing and deleting classical information:

Surfaces and logic

We now think about basic properties of copying, comparing and deleting classical information:

These are the laws obeyed by surfaces up to deformation!

Surfaces and logic

We now think about basic properties of copying, comparing and deleting classical information:

These are the laws obeyed by surfaces up to deformation! So we change notation and use **topological surfaces**.

Here is ordinary teleportation:

Here is ordinary teleportation:

We make it rigorous with this geometrical equation.

Here is ordinary teleportation:

We make it rigorous with this geometrical equation.

Here is ordinary teleportation:

We make it rigorous with this geometrical equation.

Here is ordinary teleportation:

We make it rigorous with this geometrical equation.

Theorem. Quantum solutions correspond exactly to implementations of quantum teleportation.

Here is ordinary teleportation:

We make it rigorous with this geometrical equation.

Theorem. Classical solutions correspond exactly to implementations of classical one-time-pad encryption.

Dense coding

This equation describes dense coding:

Dense coding

This equation describes dense coding:

It describes the transmission of data through a channel with only half the apparent required capacity!

This is topologically equivalent to the teleportation equation.

▶ Allows us to reason *logically* about cryptographic primitives in both quantum and classical computation.

- ▶ Allows us to reason *logically* about cryptographic primitives in both quantum and classical computation.
- ▶ Provides a formal foundation for *computational support* tools.

- ▶ Allows us to reason *logically* about cryptographic primitives in both quantum and classical computation.
- \blacktriangleright Provides a formal foundation for *computational support* tools.
- ► Gives a unified setting to consider *integrated* classical and quantum phenomena—for example, QKD+OTP.

- ▶ Allows us to reason *logically* about cryptographic primitives in both quantum and classical computation.
- \blacktriangleright Provides a formal foundation for $computational\ support$ tools.
- ▶ Gives a unified setting to consider *integrated* classical and quantum phenomena—for example, QKD+OTP.
- ► Addresses fascinating *conceptual* questions:

- ▶ Allows us to reason *logically* about cryptographic primitives in both quantum and classical computation.
- ightharpoonup Provides a formal foundation for *computational support* tools.
- ▶ Gives a unified setting to consider *integrated* classical and quantum phenomena—for example, QKD+OTP.
- ► Addresses fascinating *conceptual* questions:
 - What is the fundamental relationship between classical and quantum computation?

- ▶ Allows us to reason *logically* about cryptographic primitives in both quantum and classical computation.
- ightharpoonup Provides a formal foundation for $computational\ support\ tools.$
- ▶ Gives a unified setting to consider *integrated* classical and quantum phenomena—for example, QKD+OTP.
- ► Addresses fascinating *conceptual* questions:
 - What is the fundamental relationship between classical and quantum computation?
 - What is the mathematical structure of quantum information flow?

- ▶ Allows us to reason *logically* about cryptographic primitives in both quantum and classical computation.
- ightharpoonup Provides a formal foundation for $computational\ support\ tools.$
- ▶ Gives a unified setting to consider *integrated* classical and quantum phenomena—for example, QKD+OTP.
- ► Addresses fascinating *conceptual* questions:
 - What is the fundamental relationship between classical and quantum computation?
 - What is the mathematical structure of quantum information flow?

Thank you!