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Lattices are represented by a basis.
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Lattices

O

Lattices are represented by a basis. This basis is not unique.
Many bases span the same lattice. Some are ‘better’ than others.

Joop van de Pol
The BKZ algorithm Slide 3



Lattices
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Lattice problems are about finding short and close vectors.
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Lattices

O

Lattice problems are about finding short and close vectors.
In practice it suffices to find short and orthogonal basis vectors.
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Gram-Schmidt
Iterative process to orthonormalize a set of vectors b1, . . . ,bd :

b∗1 := b1

b∗i := bi −
i−1∑
j=1

µijb∗j , where µij =
〈bi ,b∗j 〉
‖b∗j ‖2

for all 1 ≤ j < i ≤ d .

Result: vectors b∗1, . . . ,b
∗
d that are pairwise orthogonal.

They span the same space as b1, . . . ,bd .

In lattices: only integral combinations are allowed, b∗1, . . . ,b
∗
d will not

span the same lattice!
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Gram-Schmidt

O

b1
b2
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Gram-Schmidt

O
b2

b1 = b∗1

Forget that we are in a lattice.
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Gram-Schmidt

O

b1 = b∗1
b2

b∗2

Projecting b2 gives b∗2.
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Gram-Schmidt

O
b2

b∗2

b1 = b∗1

b∗2 is not a lattice vector.
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Gram-Schmidt

O
b2

b∗2

b1 = b∗1

But there is a lattice vector within 1
2‖b∗1‖ from b∗2:

b′2 := b2 − dµ2,1c · b1.
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Gram-Schmidt

O
b2

b∗2

b1 = b∗1

b′2

It is always possible to choose a basis close to the Gram Schmidt
vectors. This basis is called size-reduced.
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LLL (1982)
First polynomial-time basis reduction algorithm.
Ideas:

I Always take the basis ‘closest’ to Gram-Schmidt.

I Improve Gram-Schmidt vectors by changing their order.
I Being greedy when ordering basis vectors is bad for the

complexity.

b1, . . . ,bi ,bi+1, . . . ,bd
b∗1, . . . ,b

∗
i ,b
∗
i+1, . . . ,b

∗
d

What happens when bi and bi+1 are swapped?
Only b∗i and b∗i+1 change. New b∗i becomes b∗i+1 + µi+1,ib∗i .
Swap when ‖b∗i+1 + µi+1,ib∗i ‖2 < δ‖b∗i ‖2, for δ ∈ (1/4,1).
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BKZ (1987, 1994)
Trade-off between basis quality and time.

b1, . . . ,bi ,bi+1, . . . ,bi+β−1, . . . ,bd
b∗1, . . . ,b

∗
i ,b
∗
i+1, . . . ,b

∗
i+β−1, . . . ,b

∗
d

Compute bnew, a combination of vectors bi ,bi+1, . . . ,bi+β−1 such
that it becomes the shortest possible i ’th Gram-Schmidt vector.
If ‖bnew‖2 < δ‖b∗i ‖2, insert bnew into the basis:

b1, . . . ,bi−1,bnew,bi , . . . ,bd

Now LLL is used to remove the linear dependency created by the
extra vector. BKZ moves cyclically through the basis indices i .

Note: we do not have a good bound on the time complexity of BKZ.
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BKZ (1987, 1994)
“Compute bnew, a combination of vectors bi ,bi+1, . . . ,bi+β−1 such
that it becomes the shortest possible i ’th Gram-Schmidt vector.”

This is equivalent to solving SVP (!) in a (projected) lattice of
dimension β. BKZ uses an SVP-oracle for lower dimensions to find
this vector bnew.

In practice enumeration is used: enumerate all lattice points within a
certain radius around the origin.
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Enumeration

O

b1
b2
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Enumeration

O

b1
b2

1) Choose a bound.
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Enumeration

O

b1 = b∗1
b2

b∗2

2) Do the Gram-Schmidt.
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Enumeration

O

b1 = b∗1
b2

b∗2

3) ‘Project’ whole lattice.
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Enumeration

O

b1 = b∗1
b2

b∗2

Lattice vector within bound⇒ its projection within bound.
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Enumeration

O

b1 = b∗1
b2

b∗2

4) Enumerate all vectors in projected lattice within bound.
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Enumeration

O

b1 = b∗1
b2

b∗2

5) For each vector in projected lattice, enumerate all lattice vectors.
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Enumeration
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b∗2

5) For each vector in projected lattice, enumerate all lattice vectors.
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Enumeration

O

b1 = b∗1
b2

b∗2

6) Pick the shortest vector.
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Enumeration as a tree

O

b1 = b∗
1

b∗
2

Enumeration is like a tree search.
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Enumeration as a tree

O

b1 = b∗
1

b∗
2

Enumeration is like a tree search. Each level corresponds to a
projected lattice.
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Enumeration as a tree

O

b1 = b∗
1

b∗
2

Enumeration is like a tree search. Each level corresponds to a
projected lattice. The leaves correspond to lattice vectors.
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Extreme pruning

O

b1 = b∗
1

b∗
2

Branches near the edge yield fewer leaves.
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Extreme pruning

O

b1 = b∗
1

b∗
2

Branches near the edge yield fewer leaves. Pruning decreases the
size of the tree.
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Extreme pruning

O

b1 = b∗
1

b∗
2

Branches near the edge yield fewer leaves. Pruning decreases the
size of the tree. It might also remove the solutions.
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Extreme pruning

O

b1 = b∗
1

b∗
2

Extreme pruning: probability p of finding the solution, but more than
p−1 times faster.
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Extreme pruning

O

b1 = b∗
1

b∗
2

Extreme pruning: probability p of finding the solution, but more than
p−1 times faster. This gives a speed-up of ≈ 2d/2.
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BKZ 2.0
Extreme pruning requires a good bound on the length of the
shortest vector. For small β the Gaussian Heuristic does not hold.

For β > 40, the projected lattices behave like random lattices. The
Gaussian Heuristic gives us a good bound.

Chen and Nguyen proposed BKZ 2.0 with the following
improvements over the original:

I Better enumeration bound
I Extreme pruning
I Aborting BKZ after a fixed number of rounds
I Better preprocessing of the blocks
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Open questions
Regarding BKZ (2.0):

I Many heuristics. What can we prove?
I Destroys local structure for global improvement. Can this be

done better?
I What about structured (ideal) lattices?
I Can we speed it up using a quantum computer?

In general:
I Are there better classical algorithms?
I What about quantum algorithms?
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