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• Natural surfactants found in more than 500 plant species (can reach 

10-15 % of the dry mass) -> natural /sustainable sourcing feasible  

• Molecules consist of hydrophobic part (triterpenoid or steroid aglycone) 

and hydrophilic oligosaccharide chains (1÷3). 

 

 

 

 

 

• One of oldest detergents (x00 years of usage in America/Asia) 

• In1890 saponins were used by Lord Rayleigh “solve” dispute between 

Maragoni & Plateau on the existence of surface viscosity  

Why Saponins !?! 

Aglycone 

Quillaja Saponin: 

• Triterpenoid aglycone. 

• 2 sugar chains (2÷5 residues). 





Saponin stabilized emulsions 

QD 

TS 

Escin 

BSC 



• Natural surfactants found in more than 500 plant species (can reach 

10-15 % of the dry mass) -> natural /sustainable sourcing feasible  

• Molecules consist of hydrophobic part (triterpenoid or steroid aglycone) 

and hydrophilic oligosaccharide chains (1÷3). 

 

 

 

 

 

• One of oldest detergents (x00 years of usage in America/Asia) 

• In1890 saponins by Lord Rayleigh to clarify the origin of interfacial 

viscosity  and address the dispute between Maragoni & Plateau 

• Have a variety of positive bio-effects: anti-viral, anti-microbial, anti-  

inflammatory, cholesterol-lowering, anti-cancer, adjuvant etc. 

Introduction  / Why Saponis are relevant 

Aglycone 

Quillaja Saponin: 

• Triterpenoid aglycone. 

• 2 sugar chains (2÷5 residues). 





1. Characterize the surface shear & dilatational behavior 

of adsorption layers of saponins from various sources 

and structures 

2. Establish  structure ↔ functionality relation. 

So let use saponins and 

Escin (1 sugar chains) Quillaja (2 sugar chains) 



Studied saponins 
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Mono/Bidesmosidics 
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Purity of Studied saponins  
How we can make science out of the mess ? 

Type of aglycone Trade Name Abbreviation 
Saponins in 

extract % 

Triterpenoid 

Horse chestnut extract HC 20 

Escin ES  95 

Tea Saponin TS 96.2 

Berry Saponin 

Concentrate 
BSC 53 

Sapindin SAP 50 

Quillaja Dry 100 QD 26 

Ginsenosides GS 80 

Ayurvedic Saponin 

Concentrate 
ASC 30 

Steroid 

Tribulus terrestris 

extract 
TT 45 

Foamation Dry 50 FD 9 

Fenusterols FEN 50 



Surface Tension vs Bulk Pressure 
Surface tension – Energy per unit area or Force per unit length 

 

 

Pressure -        Energy per unit volume or Force per unit area 

 

Equivalent bulk modulus: 

 

E~Es/~30 mN/m / 1 nm~300 atm 

Es=F/L 

E= F/ (L)~Es/ 

Surface tension vs bulk pressure: 

 

E~Es/~ 1 mN/m / 1 nm~10 atm 

  =F/L 

Peq= F/ (L)~   / 

E~Es/~ 1000 mN/m / 1 nm~1 GPa 



Surface tension isotherms 
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Volmer adsorption isotherm 

Escin
pH = natural

Escin concentration, mM
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 Gibbs

Van der Waals adsorption isotherm 
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Gibbs adsorption isotherm 
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CMC 



Saponin concentration, mM
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Mw = 1000 g/mol

Volmer isotherm

K = 1088 m
3
/mol

inf = 3.9 mol/m
2

CMC = 3.1 mol/m
2

Area per molecule at CMC = 0.54 nm
2



Saponin concentration, wt %

10-5 10-4 10-3 10-2 10-1 100 101

S
u

rf
a
c
e
 t

e
n

s
io

n
, 

m
N

/m

30

35

40

45

50

55

60

65

ASC

Saponidin
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Berry saponin

Saponin concentration, wt %
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Surface tension isotherms for ASC, BSC and Sapindin 

Positive Curvature !!!! 

For these saponins we cannot 

determine the characteristics of 

adsorption layer (slope of the 

curves contradicts Gibbs isotherm) 

Mixture of components and 

presence of aggregates?! 



Molecular packing mono vs bi desmosides 

Is there a link between molecular packing & surface modulus 

Shear 

A  0.8-1.0 nm2 A  0.4-0.5  nm2 



Surface Rheology 

( ), ( )   
• Interactions between the molecules 

• Kinetics of adsorption / desorption 



Surface Shear Rheology: bicone tool 

Top view 

M,  

Lateral view 

Shear stress:  2

1/ 2М R 

 2 1 2 1( ) / 2( )R R R R   Shear deformation: 



•  At Bo < 200: 

− Surface and sub-surface flows coupling. 

− Numerical procedure needed to calculate the surface viscosity. 

• Surfactant layer regarded as a 2D body at Bo > 200. 

The Boussinesq number 

surface viscous drag

bulk viscous drag .
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Oscillatory Amplitude sweep (tA = 30 min) 

The bidesmosidic saponins have lower elastic and viscous modulus.  

Strain amplitude, %
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Creep Relaxation Experiments 

(1) Deformation at constant torque (1 N.m).  

(2) Strain relaxation. 
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• Quillaja saponin. 

• Maxwell + Kelvin (1) + Kelvin (2). 

• 6 parameters (3 viscous and 3 elastic). 

• 2 relaxation times. 

G0 = 1/J0 

G1 G2 

0 

1 2 

Rheological model (compound Voigt) 
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Molecular interpretation 

•  Molecules aggregated in domains. 

•  Burger Element: [Maxwell + 1st Kelvin element] – 

deformation and re-arrangement of domains. 

•  2nd Kelvin Element – re-arrangement of molecules within 

the domains. 



Viscoelasticity of triterpenoid saponins 

• Highly elastic surface layer, G`>>G``. 

• G` increases for more than 12 hours of aging of the layer. 

• G`` decreases or stays constant. 

• Saponins with one sugar chain exhibit much higher elasticity. 

G` ~ 1000 mN/m G` ~ 100 mN/m 
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K – dilatational elasticity 

 – shear elasticity 

S – dilatational viscosity 

S – shear viscosity 
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Oscillatory dilatational deformations  

5 % deformation 

Deformation created by the moving barrier(s) in 

the LM is uniaxial, i.e., it is a superposition of 

well defined dilatation and shear 

α=ln(A/A0)  - relative dilatation 

Boundary effects are neglected!  



Adsorbing system: 0.5 wt % saponins + 10 mM NaCl 

Oscillatory experiments done after equilibration has been reached (>30 min) 

0.5 wt % ES
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From the best fit 

K+ = 204 mN/m 

S+S = 163 mN.s/m 

Perpendicular plate 
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From the best fit 

K- = 103 mN/m 

S-S = 91 mN.s/m 

For expanding Escin layer 

K = 154 mN/m;  = 50 mN/m;  

s = 127 mN.s/m; s = 36 mN.s/m 
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Analysis of experimental data from dilatation  

stress-relaxation experiments  
Burger model 
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E1 

E2 

1 

2 

tR1 = 1/E1 

tR2 = 2/E2 

From the best fit of deformation and relaxation stages we determine 

E1, E2, tR1 and tR2 



Surface rheological properties, 

as determined by oscillating drop method 

ASC

Deformation, %
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From this experiment we determine the surface dilatational 

moduli, as functions of surface deformation. 

T = 10 s 



Expansion and contraction of large pendant drop 

QS 

The formation and destruction of elastic membrane is reversible! 

initial state contraction final state 

equilibrium contraction 

state after 100 s 
expansion final state – very 

close to the initial one 



Isotropic vs. Anisotropic Interfaces 

Fluid Interfaces: 

- Zero surface shear elasticity; 

- Isotropic: Single surface tension, , which is  

the same along the “meridians” and “parallels”;  

- Uniform: The surface tension   is the same in all 

points of the interface; 

- Method:  DSA based on fit of meniscus profile by 

Laplace equation;  and p – adjustable parameters.  

Solid Interfaces (Membranes): 

- Nonzero surface shear elasticity; 

- Anisotropic: Two different surface tensions, s and 

φ , along the “meridians” and “parallels”;  

- Noniform: The surface tensions s and φ  vary 

from point to point throughout the interface; 

- Method:  CMD (capillary meniscus dynamometry) 

based on fit of data for meniscus profile and p.  



Force Balances per Unit Area of a Curved Interface 
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Balance of Integral Surface Tension and Pressure Forces 
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Details in: Danov et al., J. Colloid Interface Sci. 440 (2015) 168. 



Variations of s and  along the Bubble Profile 

Anisotropic  

non-uniform 

surface tension 

Wrinkles in the 

zones with 

negative φ. 

Wrinkles theory: Danov, Kralchevsky, Stoyanov, Langmuir 26 (2010) 143.   

apex 

apex 



                          DSA vs. CMD 

Surface tension DSA and the error of the Laplace fit given by the DSA apparatus, 

vs. surface tension at the drop apex, CMD(0), measured by CMD.  

For anisotropic surface 

DSA gives greater 

nonphysical values 

 DSA  

The error of the DSA fit  

is not so sensitive to 

surface stress 

anisotropy 
apex 

The onset of deviation  

of DSA from CMD  

may serve as criterion 

for surface stress 

anisotropy 

onset of anisotropy 



T = 10 s

Surface deformation, %
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Take home messages & (Soft Matter) challenges   
• The old new challenge -> The origin of interfacial rheology (1890, Rayleigh) is linked with 

saponins 

• There are still unresolved theoretical & experimental issues with respect of surface 

rheology 

• How we separate/extract/QC naturals ? 

• How/did we measure surface stress [tensor] and strain correctly  

• Can we do in plane measurements / if not how we estimate local/global 

deformations due to the measurement  

• Did we use the right constitutive  and measurement protocols in order to convert 

surface storage and loss moduli into surface elasticity and viscosity ?  

• Saponins  are large class of natural surfactants with unique architecture  and surface  

properties, with multiple functionalities, which despite of old history of use and long list of 

functionalities are yet poorly understood -> and could be used as a proxy for validation of 

next generation theoretical and experimental soft matter studies  

• Some of these natural compounds challenge our standard concepts of surfactants and 

surface behavior and might be at the limit of what our current methods can measure  

• Naturals are hot consumer trend and we need to develop appropriate soft matter tools that 

allow us to study and conceptualize them -> similar to what we have for synthetic polymers 

and surfactant systems   
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