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Learning with Errors

Given (A, c) with c ∈ Zm
q , A ∈ Zm×n

q , s ∈ Zn
q and e ∈ Zm×`

q do we have
c


=



← n →

A


×

 s

+


e


or c←$ U(Zm

q ).



We Want to Build Crypto Systems

Not precise enough

“Given m, n, q and χ it takes 2Õ(nε) operations in Zq to solve LWE.”



Solving Strategies

Given A, c with c = A× s + e or c←$ U(Zm
q )

I Solve the Short Integer Solutions problem (SIS) in the left kernel
of A, i.e.

find a short w such that w × A = 0

and check if
〈w, c〉 = w × (A× s + e) = 〈w, e〉

is short.

I Solve the Bounded Distance Decoding problem (BDD), i.e.

find s′ such that ‖w − c‖ with w = A× s′ is minimised.
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SIS

Find w s.t. w × A = 0 with ‖w‖ ≈ 1
α to get

‖ 〈w, e〉 ‖ ≈ α q

α
= q

to distinguish from U(Zq) in poly(n) time. Let B denote a basis for
{w | w · A = 0}. Using standard results from lattice reduction we get

1

α
= δm det(B)1/m = δ

√
n log2 q/ log2 δqn/

√
n log2 q/ log2 δ

= 22
√

n log2 δ log2 q.

It follows that lattice reduction with δ = 2
log22 α

4n log2 q solves Decision-LWE.



BDD

Lattice reduction produces short and relatively orthogonal bases not
only short vectors.

1. Reduce lattice basis to recover short and orthogonal basis A′

2. Use variant of Babai’s nearest plane algorithm to find vector close to
c = A′ × s + e.

Tradeoff between lattice reduction and decoding stage.
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BKW Algorithm I

We revisit Gaussian elimination:
a11 a12 a13 · · · a1n c1
a21 a22 a23 · · · a2n c2

...
...

...
. . .

...
...

am1 am2 am3 · · · amn cm



?
=


a11 a12 a13 · · · a1n 〈a1, s〉+ e1
a21 a22 a23 · · · a2n 〈a2, s〉+ e2

...
...

...
. . .

...
...

am1 am2 am3 · · · amn 〈am, s〉+ em





BKW Algorithm II

⇒


a11 a12 a13 · · · a1n 〈a1, s〉+ e1
0 ã22 ã23 · · · ã2n 〈ã2, s〉+ e2 − a21

a11
e1

...
...

. . .
...

...
0 ãm2 ãm3 · · · ãmn 〈ãm, s〉+ em − am1

a11
e1


I ai1

a11
is essentially random in Zq wiping all “smallness”.

I If ai1
a11

is 1 noise-size doubles because of the addition.



BKW Algorithm III

We considering a ≈ log n ‘blocks’ of b elements each.
a11 a12 a13 · · · a1n c0
a21 a22 a23 · · · a2n c1

...
...

...
. . .

...
...

am1 am2 am3 · · · amn cm





BKW Algorithm IV

For each block we build a table of all qb possible values indexed by Zb
q.

T 0 =


−b q2 c −b

q
2 c t13 · · · t1n ct,0

−b q2 c −b
q
2 c+ 1 t23 · · · t2n ct,1

...
...

...
. . .

...
...

b q2 c b q2 c tq23 · · · tq2n ct,q2


For each z ∈ Zb

q find row in A which contains z as a subvector at the
target indices.



BKW Algorithm V

Use these tables to eliminate b entries with one addition.


a11 a12 a13 · · · a1n c0
a21 a22 a23 · · · a2n c1

...
...

. . .
...

...
am1 am2 am3 · · · amn cm



+


−b q2 c −b

q
2 c t13 · · · t1n ct,0

−b q2c −b
q
2c+ 1 t23 · · · t2n ct,1

...
...

. . .
...

...
b q2 c b q2 c tq23 · · · tq2n ct,q2



⇒


a11 a12 a13 · · · a1n c0
0 0 ã23 · · · ã2n c̃1
...

...
. . .

...
...

am1 am2 am3 · · · amn cm





BKW Algorithm VI

Memory requirement of

≈ qb

2
· a · (n + 1)

and time complexity of

≈ (a2n) · q
b

2
.

A detailed analysis of the algorithm for LWE is available as:

M.A., Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick and
Ludovic Perret
On the Complexity of the BKW Algorithm on LWE
In Designs, Codes and Cryptography.



BKW with Small Secret

Assume s←$ U(Zn
2), i.e. all entries in secret s are very small.

Common setting in cryptography

I for performance reasons and

I to to realise some advanced functionality.

A technique called ‘modulus switching’ can be used to improve the
performance of homomorphic encryption schemes.

Lazy Modulus Switching

Exploit the same structure to solve such instances faster with BKW.

M.A., Jean-Charles Faugère, Robert Fitzpatrick, Ludovic Perret
Lazy Modulus Switching for the BKW Algorithm on LWE.
In PKC 2014, Springer Verlag, 2014.



Complexity

BKW for q = poly(n)

O
(
2cn · n log2

2 n
)

BKW + naive modulus switching for q = poly(n)

O
(

2

(
c+

log2 d
log2 n

)
n · n log2

2 n

)
BKW + lazy modulus switching for q = poly(n)

O
(

2

(
c+

log2 d− 1
2
log2 log2 n

log2 n

)
n · n log2

2 n

)
where 0 < d ≤ 1 is a small constant (so log d < 0).
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The Idea I

Noise follows a discrete Gaussian distribution, we have:

Pr[e ←$ χ : ‖e‖ > C · σ] ≤ 2

C
√

2π
e−C

2/2 ∈ eO(−C 2).

−20 −15 −10 −5 0 5 10 15 20

0

5 · 10−2

0.1

0.15



The Idea II

If e ←$ χ and

P(X ) = X
C ·σ∏
i=1

(X + i)(X − i),

we have P(e) = 0 with probability at least 1− eO(−C 2).

If (a, c) = (a, 〈a, s〉+ e) ∈ Zn
q × Zq, and e ←$ χ, then

P
(
− c +

n∑
j=1

a(j)xj
)

= 0,

with probability at least 1− eO(−C 2).



The Idea III

Each (a, 〈a, s〉+ e) = (a, c) generates a non-linear equation of degree
2Cσ + 1 in the n components of the secret s which holds with probability

1− eO(−C 2).

Solve this “noise-free” system of equations with Gröbner bases.



Tradeoff

More samples increase

1. the number of equations → solving is easier.

2. the required interval Cσ and hence the degree → solving is harder.



Complexity

Arora-Ge (Linearisation):

O
(

2 8ω σ2 log n(log n−log(8σ2 log n))
)

Arora-Ge (Linearisation) with σ =
√
n

O
(
2 8ω n log n(log n−log(8 n log n))

)
Gröbner Bases with σ =

√
n

O
(
22.16ω n

)
under some regularity assumption.



BinaryError-LWE

I BinaryError-LWE is a variant of LWE where the noise is {0, 1} but
the number of samples severly restricted.

I Given access to m = O (n log log n) samples we can solve
BinaryError-LWE in subexponential time:

O
(

2
ω n log log log n

8 log log n

)
.

M.A., Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick and
Ludovic Perret
Gröbner Bases Techniques in LWE-Based Cryptography
To appear.
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Questions?
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