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Learning with Errors

Given (A,c) with c € Zg, A € ZZ”(", s€Zgandec ngxl do we have

or ¢ <5 U(Z7).



We Want to Build Crypto Systems

Not precise enough

“Given m, n,q and y it takes 29(") operations in Zq to solve LWE."




Solving Strategies

Given A, c with ¢ = A x s + e or ¢ <5 U(Z])

» Solve the Short Integer Solutions problem (SIS) in the left kernel

of A, i.e.

find a short w such that w x A =10
and check if

(w,c) =w x (A xs+e)=(w,e)
is short.

» Solve the Bounded Distance Decoding problem (BDD), i.e.

find s’ such that ||w — c|| with w = A x s’ is minimised.
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SIS

Find w s.t. w x A =0 with [[w|| ~ L to get

aq
— =

[ {w,e) || ~

to distinguish from U(Zg) in poly(n) time. Let B denote a basis for
{w | w- A =0}. Using standard results from lattice reduction we get

5m det(B)l/m _ 5\/n log, q/ log, 5qn/\/n log, q/ log, &
— 22\/n log, & Iong.

1
(0%

It follows that lattice reduction with § = 2% 29 solves Decision-LWE.



BDD

Lattice reduction produces short and relatively orthogonal bases not
only short vectors.

1. Reduce lattice basis to recover short and orthogonal basis A’

2. Use variant of Babai's nearest plane algorithm to find vector close to
c=A'"xs+te.

Tradeoff between lattice reduction and decoding stage.
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BKW Algorithm |

We revisit Gaussian elimination:
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BKW Algorithm Il

apy | ap [ a3 - ai, | (a,s) ter
0 | @ | 83 -+ &2y | (32,5 te— e
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:ﬁ is essentially random in Zg wiping all “smallness”.

If :Tl is 1 noise-size doubles because of the addition.



BKW Algorithm [l

We considering a ~ log n ‘blocks’ of b elements each.

11 a2 | @413 - dip | Q
dp1 adxp | a3 - A2 | O

Aml aAm2 | Am3 " Amn | Cm



BKW Algorithm IV

For each block we build a table of all g° possible values indexed by Z5.

=2 =13 tiz - tip | Go
70 =12 -3/ +1 ]tz -ty | ca
I_gJ L%J tq23 T tan Ct,q?

For each z € ZZ find row in A which contains z as a subvector at the
target indices.



BKW Algorithm V

Use these tables to eliminate b entries with one addition.

a1 Qd12 | 13 - ad1p | Co
d1 a2 | A3 - aAp | O
Aml aAm2 | Am3 toe Amn | Cm
r q q
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BKW Algorithm VI

Memory requirement of

b
~ % ca-(n+1)
and time complexity of
2 q°

A detailed analysis of the algorithm for LWE is available as:

E M.A., Carlos Cid, Jean-Charles Faugere, Robert Fitzpatrick and
Ludovic Perret
On the Complexity of the BKW Algorithm on LWE
In Designs, Codes and Cryptography.



BKW with Small Secret

Assume s < U(Z5), i.e. all entries in secret s are very small.

Common setting in cryptography
» for performance reasons and

> to to realise some advanced functionality.

A technique called ‘modulus switching’ can be used to improve the
performance of homomorphic encryption schemes.

Lazy Modulus Switching

Exploit the same structure to solve such instances faster with BKW.

E M.A., Jean-Charles Faugere, Robert Fitzpatrick, Ludovic Perret
Lazy Modulus Switching for the BKW Algorithm on LWE.
In PKC 2014, Springer Verlag, 2014.



Complexity
BKW for g = poly(n)

O (27 n log3 n)

BKW + naive modulus switching for g = poly(n)

@ (2(C+:Z§§ﬂ) " . n log> n)

BKW + lazy modulus switching for g = poly(n)
logo df% logp logy n
O (2 (CJr logp n ) n - n |Og§ n>

where 0 < d < 1 is a small constant (so logd < 0).
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The Idea |

Noise follows a discrete Gaussian distribution, we have:

e—C/2 o(fcz)‘

2
Pr[ee$x:||e||>C~U]§C7 €e
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The Idea Il

If e <—¢ x and
C.o

P(X) =X H(X + ) (X =),

we have P(e) = 0 with probability at least 1 — e©(~<").

If (a,c) = (a,(a,s) +e) € Zy x Zgq, and e <5 Y, then
P(—c+) agx) =0,
j=1

with probability at least 1 — 0(=¢).



The Idea IlI

Each (a, (a,s) + e) = (a, ¢) generates a non-linear equation of degree
2Co + 1 in the n components of the secret s which holds with probability

1-— eo(—cz)_

Solve this “noise-free” system of equations with Grobner bases.



Tradeoff

More samples increase
1. the number of equations — solving is easier.

2. the required interval Co and hence the degree — solving is harder.



Complexity

Arora-Ge (Linearisation):

O (2 8w o2 log n(log n—log(8 o2 log n)))

Arora-Ge (Linearisation) with o = \/n

O (2 8w nlog n(log n—log(8 nlog n)))

Grobner Bases with 0 = +/n

O (22.16w n)

under some regularity assumption.



BinaryError-LWE

» BinaryError-LWE is a variant of LWE where the noise is {0,1} but
the number of samples severly restricted.

» Given access to m = O (nloglog n) samples we can solve
BinaryError-LWE in subexponential time:

w n logloglog n
O 2 8log log n .

E M.A., Carlos Cid, Jean-Charles Faugere, Robert Fitzpatrick and
Ludovic Perret
Grobner Bases Techniques in LWE-Based Cryptography
To appear.
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