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Interface (classification) problems

Interface problems exists everywhere in science and technology. For
imaging and vision, it is somehow classical:

I Mumford-Shal model

I GAC model

I Chan-Vese model

How to solve these interface problems?

I active count our

I level set

I phase-field

I ...

Traditional methods are:

I Nonlinear

I Non-convex

I ...
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Max-Flow / Min-Cut

(Vs ,Vt) is a cut, wij = cost of cutting edge(i , j)
cost of cut c(Vs ,Vt) =

∑
i∈Vs ,j∈Vt

wij

Min-cut: find cut of minimum cost,
Max-Flow: Find the maximum amount of flow from s to t.

Max-flow = min-cut.
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Higher dimensional problems

A graph for 2D images:

Figure: Graph used for discrete 2D binary labeling



Two-phase Min-cut – Discretized setting

Figure: Graph and cut for discrete binary labeling

It is easy to see the cost of a cut (u(p) = 0 or 1). A minimum cut
is to find u for:

min
u∈{0,1}

∑
p∈P

f1(p)(1−u(p))+f2(p)u(p)+
∑
p∈P

∑
q∈N k

p

g(p, q)|u(p)−u(q)|.

Capacity:

ws,p = f1(p), wt,p = f2(p), wp,q = g(p, q).

Ref: N k
p is the k-neighborhood of p ∈ P.



Two-phase Min-cut – corresponding continuous setting

Figure: Graph used for discrete and continuous binary labeling

A ”continuous” minimum cut is to solve:

min
u∈{0,1}

∫
Ω
f1(x)(1−u(x))+f2(x)u(x)+g1(x)|D1u(x)|+g2(x)|D2u(x)|.

Capacity:

ws(x) = f1(x), wt(x) = f2(x), w1(x) = g1(x), w2(x) = g2(x).



Max-Flow over a graph

Figure: Graph used for discrete binary labeling

Max-flow formulation

max
ps ,pt ,q

∑
v∈V\{s,t}

ps(v)

subject to |q(v , u)| ≤ g(v , u), ∀(v , u) ∈ V × V
0 ≤ ps(v) ≤ f1(v), ∀v ∈ V\{s, t};
0 ≤ pt(v) ≤ f2(v), ∀v ∈ V\{s, t};( ∑

u∈N(v)

q(v , u)
)
− ps(v) + pt(v) = 0, ∀v ∈ V\{s, t}; .



Continuous Max-Flow

Figure: Discrete (left) vs. Continuous (right)

Continuous max-flow formulation

sup
ps ,pt ,q

∫
Ω
ps(x) dx

subject to|q1(x)| ≤ g1(x); |q2(x)| ≤ g2(x), ∀x ∈ Ω;

0 ≤ ps(x) ≤ f1(x), ∀x ∈ Ω;

0 ≤ pt(x) ≤ f2(x), ∀x ∈ Ω;

div q(x)− ps(x) + pt(x) = 0, a.e. x ∈ Ω.

Related: (G. Strang (1983)).



Continuous Max-Flow: different internal flow capacity

Figure: Discrete (left) vs. Continuous (right)

Continuous max-flow formulation

sup
ps ,pt ,q

∫
Ω
ps(x) dx

subject to
|q(x)| =

√
q2

1(x) + q2
2(x) ≤ g(x), ∀x ∈ Ω;

0 ≤ ps(x) ≤ f1(x), ∀x ∈ Ω;

0 ≤ pt(x) ≤ f2(x), ∀x ∈ Ω;

div q(x)− ps(x) + pt(x) = 0, a.e. x ∈ Ω.



Connection: Continuous Max-Flow and Min-Cut

Lagrange multiplier u for flow conservation condition

div q(x)− ps(x) + pt(x) = 0, a.e. x ∈ Ω.

yields primal-dual formulation

sup
ps ,pt ,q

inf
u

∫
Ω
ps + u

(
div q − ps + pt

)
dx

s.t. ps(x) ≤ f1(x) , pt(x) ≤ f2(x) , |q(x)| ≤ g(x) .

Optimizing for flows ps , pt , q results in:

min
u∈[0,1]

∫
Ω
f1(x)(1− u(x)) + f2(x)u(x) dx + g(x) |∇u(x)| dx .

This is exactly the same model as the model in CEN (2006). 1

1T. F. Chan and S. Esedoglu and M. Nikolova: Algorithms for finding global
minimizers of image segmentation and denoising models, SIAM J. Appl. Math.,
66, 1632–1648,(2006)



Three problems

PCLMS or Binary LM (Lie-Lysaker-T.,2005):

min
u(x)∈{0,1}

∫
Ω
f1(1− u) + f2u + g(x)|∇u|dx .

Convex problem (CEN, (Chan-Esdoglu-Nikolova,2006))

min
u(x)∈[0,1]

∫
Ω
f1(1− u) + f2u + g(x)|∇u|dx .

Graph-cut (Boykov-Kolmogorov,2001)

max
ps ,pt ,q

∫
Ω
psdx subject to:

ps(x) ≤ f1(x), pt(x) ≤ f2(x), |p(x)| ≤ g(x),

divp(x)− ps(x) + pt(x) = 0.



Continuous Max-Flow and Min-Cut

Multiplier-Based Maximal-Flow Algorithm
Augmented lagrangian functional (Glowinski & Le Tallec, 1989)

Lc(ps , pt , q, λ) :=

∫
Ω
ps dx+λ

(
div q−ps+pt

)
−c

2
| div q−ps+pt |2 dx .

minmax subject to:
ps(x) ≤ f1(x) , pt(x) ≤ f2(x) , |q(x)| ≤ g(x)
ADMM algorithm: For k=1,... until convergence, solve

qk+1 := arg max
‖q‖∞≤α

Lc(pks , p
k
t , q, λ

k)

pk+1
s := arg max

ps(x)≤f1(x)
Lc(ps , p

k
t , q

k+1, λk)

pk+1
t := arg max

pt(x)≤f2(x)
Lc(pk+1

s , pt , q
k+1, λk)

λk+1 = λk − c (div qk+1 − pk+1
s + pk+1

t )



Metrication error, Parallel, GPU, ...

Experiment of mean-curvature driven 3D surface evolution (volume size: 150X150X150 voxels). (a) The radius plot

of the 3D ball evolution driven by its mean-curvature flow, which is computed by the proposed continuous max-flow

algorithm; its function is theoretically r(t) =
√
C − 2t. (b) The computed 3D ball at one discrete time frame,

which fits a perfect 3D ball shape. This is in contrast to (c), the computation result by graph cut [15] with a 3D

26-connected graph. The computation time of the continuous max-flow algorithm for each discrete time evolution

is around 1 sec., which is faster than the graph cut method (120 sec.)

Ref: Y. Yuan, E. Ukwatta, X. Tai, A. Fenster, and C. Schnorr. A fast
global optimization-based approach to evolving contours with generic shape
prior. Technical report, also UCLA Tech. Report CAM 12-38, 2012.



Metrication error, Parallel, GPU, ...

I Fully parallel, easy GPU implementation.

I linear grow of computational cost (per iteration): 2D, 3D, ...



Multiphase Approaches

Multiphase Approaches



Multiphase problems – Approach I

We need to identify n
characteristic functions
ψi (x), i = 1, 2 · · · n:

ψi (x) ∈ {0, 1},
n∑

i=1

ψi (x) = 1.
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Ref: Zach-et-al (2008), Lelmman-et-al(2009,2010, 2013), Bae-Yuan-T.
(IJCV 2009), Bae-et-al (SSVM2009, 2012), Yuan-et-al (ECCV2010,
CVPR2010).



Multiphase problems – Approach II
Each point x ∈ Ω is labelled by a vector function:

u(x) = (u1(x), u2(x), · · · ud(x)).

I Multiphase: Total number of phases n = 2d . (Chan-Vese)

ui (x) ∈ {0, 1}. Total phase n = 2m.

I More than binary labels: Total number of phases n = Bd .

ui (x) ∈ {0, 1, 2, · · ·B}.

Ref: Vese-Chan (2002), Bae-T. (JMIV2013), Lie-et-al (IEEE TIP 2006),
Bae-et-al(2012,2013), Liu-T.-Leung(EMMCVPR2013),
Nieuwenhuis-Toppe-Cremers (IJCV2013).



Multiphase problems – Approach II
Each point x ∈ Ω is labelled by a vector function:

u(x) = (u1(x), u2(x), · · · ud(x)).

I Multiphase: Total number of phases n = 2d . (Chan-Vese)

ui (x) ∈ {0, 1}. Total phase n = 2m.

I More than binary labels: Total number of phases n = Bd .

ui (x) ∈ {0, 1, 2, · · ·B}.

Ref: Vese-Chan (2002), Bae-T. (JMIV2013), Lie-et-al (IEEE TIP 2006),
Bae-et-al(2012,2013), Liu-T.-Leung(EMMCVPR2013),
Nieuwenhuis-Toppe-Cremers (IJCV2013).



Multiphase problems – Approach II
Each point x ∈ Ω is labelled by a vector function:

u(x) = (u1(x), u2(x), · · · ud(x)).

I Multiphase: Total number of phases n = 2d . (Chan-Vese)

ui (x) ∈ {0, 1}. Total phase n = 2m.

I More than binary labels: Total number of phases n = Bd .

ui (x) ∈ {0, 1, 2, · · ·B}.

Ref: Vese-Chan (2002), Bae-T. (JMIV2013), Lie-et-al (IEEE TIP 2006),
Bae-et-al(2012,2013), Liu-T.-Leung(EMMCVPR2013),
Nieuwenhuis-Toppe-Cremers (IJCV2013).



Multiphase problems – Approach III

Each point x ∈ Ω is labelled by

u(x) = i , i = 1, 2, · · · n.

I One label function is enough
for any n phases.

I More generall
u(x) = `i , i = 1, 2, · · · n.
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Ref: Lie-Lysaker-T. (2006), Ishikawa(2003), Darbon-Sigelle (2006),
Pock-et-al(2008), Bae-T. (SSVM2009), Brown-Chan-Bresson(2011),
Bae-Yuan-T.-Boykov (2013,2014).



Application to machine learning

We would like to classify a high dimensional data into multi-classes.



The model

I Graph: G = (V ,E ), each data is one vertices in V , E are the
connections.

I the weight on E :

w(x , y) = e−
d(x,y)2

σ2 , (1)

d(x , y): distance measure.
Another choice:

w(x , y) = e
− d(x,y)2
√
τ(x)τ(y) , (2)

τ(x) = d(x , z)2, and z is the Mth closest vertex to vertex x .



Nonlocal TV on a graph

Gradient operator ∇ : V → E is:

(∇λ)w (x , y) = w(x , y)1−q(λ(y)− λ(x)). (3)

Divergence div : E → V is:

(divw φ)(x) =
1

2d(x)r

∑
y

w(x , y)q(φ(x , y)− φ(y , x)), (4)

It is true:
〈∇u, φ〉E = −〈u, divw φ〉V .



Partition problem on a graph

We are interested in solving partition problems of the form

min
S⊂V

∑
(x ,y)∈E : x∈V , y∈V \S

w(x , y) (5)



Partition problem on a graph

The problem can be expressed as

min
λ∈{0,1}

EP(λ) = TVw (λ) +
∑
x∈V

f (λ(x), x), (6)

where

TVw (λ) =
1

2

∑
x .y

w(x , y)q|λ(x)− λ(y)|

f (λ(x), x) = η(x)|λ(x)− λ0(x)|2, (7)

where λ0 is a binary function taking value 1 or 0 at some vertices
with known classification. η = 0 on unclassified vertices.



Partition problem on a graph

Define:

Cs(x) = f (0, x) , Ct(x) = f (1, x), ∀x ∈ V ,

g(φ(x), x) = Ct(x)φ(x) + Cs(x)(1− φ(x)) , ∀x ∈ V . (8)

The problem

min
λ∈{0,1}

EP(λ) = TVw (λ) +
∑
x∈V

g(λ(x), x) (9)

is equivalent to:

min
λ∈[0,1]

EP(λ) = TVw (λ) +
∑
x∈V

g(λ(x), x), (10)



Partition problem on a graph

Algorithm 1 Max-flow Algorithm

Initialize p1
s , p1

t , p1 and λ1. For k = 1, ... until convergence:
I Optimize p flow

pk+1 = arg max
|p(e)|≤W (e) ∀e∈E

−c

2

∥∥∥divw p − F k
∥∥∥2

2
,

I Optimize source flow ps

pk+1
s = arg max

ps(x)≤Cs(x) ∀x∈V

∑
x∈V

ps −
c

2

∥∥∥ps − G k
∥∥∥2

2
,

I Optimize sink flow pt

pk+1
t = arg max

pt(x)≤Ct(x) ∀x∈V
−c

2

∥∥∥pt − Hk
∥∥∥2

2
,

I Update λ

λk+1 = λk − c (divw pk+1 − pk+1
s + pk+1

t ) .



MNIST: test

Figure: Examples of digits from the MNIST data base

Using random initialization and random fidelity, the max-flow
method obtained an accuracy of around 98.48% averaged over 100
runs with different fidelity sets of 500 randomly chosen points (or

only 3.62% of the set).



Banknote Authentication Data Set

The banknote authentication data set, from the UCI machine
learning repository: http://archive.ics.uci.edu/ml/, is a data set of
1372 features extracted from images (400× 400 pixels) of genuine
and forged banknotes. Wavelet transform was used to extract the
features from the images. The goal is to segment the banknotes
into being either genuine or forged.
With the max-flow method, for a 5.1% fidelity set, we were able to
obtain an average accuracy (over 100 different fidelity sets) of
around 99.09%.



Two moons

Figure: Two moons example with max-flow method

This data set is constructed from two half circles in R2 with a radius of one. The centers of the two half circles are
at (0, 0) and (1, 0.5). A thousand uniformly chosen points are sampled from each circle, embedded in R100 and
i.d.d. Gaussian noise with standard deviation 0.02 is added to each coordinate. Therefore, the set consists of two
thousand points. Starting from some initial classification of the points, the goal is to segment the two half circles.
For the max-flow method, in the case of 65 or lower number of fidelity points (3.25 %), we increased the number
of edges of supervised points to others to avoid the trivial global minimizer where all points but the supervised ones
are classified as one class.
Using random initialization and random fidelity, for the max-flow method, we obtained an average accuracy (over
100 different fidelity sets) of 97.10% and 97.05% in the case of 100 and 50 fidelity points, respectively.



Comparison of our convex algorithms to binary MBO and
GL methods

Table: Comparison of methods

max-flow primal augmented binary binary

Lagrangian MBO GL

MNIST (3.6% fidelity) random

initialization, random fidelity 98.48% 98.44% 98.37% 98.29%

MNIST (3.6% fidelity) 2nd eigenvector

initialization, random fidelity 98.48% 98.43% 98.36% 98.25%

MNIST (3.6% fidelity) random

initialization, corner fidelity 98.47% 98.40% 62.35% 64.39%

MNIST (3.6% fidelity) 2nd eigenvector

initialization, corner fidelity 98.46% 98.40% 63.87% 63.19%

Banknote Data Set (5.1% fidelity) 99.09% 98.75% 95.43% 97.76%

Banknote Data Set (3.6% fidelity) 98.83% 98.29% 93.48% 96.10%

two moons (5% fidelity) 97.10% 97.07% 98.41% 98.31%

two moons (2.5% fidelity) 97.05% 96.78% 97.53% 98.15%



Test with random initialization: MNIST
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Figure: MNIST. Left: initialization, supervised points are marked in
yellow and magenta. Middle: max-flow algorithm result. Right: binary
MBO result



Tests: Rod
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Tests: Rod

Random initial.,
corner fidelity

max-flow result binary MBO result

2nd eigenvector ini-
tialization

max-flow result binary MBO result

Figure: Results for Rod 1. Left: initialization, supervised points are
marked in yellow and green. Middle: max-flow algorithm result. Right:
binary MBO result



Number of Iterations and Timing

Table: Number of Iterations and Timing

Number of iterations max-flow primal augmented binary MBO binary GL

Lagrangian

MNIST 426 2709 10 52

Banknote Authentication Data Set 314 725 7 449

two moons 1031 451 8 108

Timing (s) max-flow primal augmented binary MBO binary GL

Lagrangian

MNIST a 2.88 43.21 0.52 0.78

Banknote Authentication Data Set 1.21 3.76 0.90 0.95

two moons 4.13 5.23 2.30 2.98

aThis is the timing of the method using already computed weights and
eigenvalues/eigenvectors of the random walk Laplacian.



Comparison of Final Energy

Table: Comparison of Final Energy

Data Set initial energy max-flow primal augmented binary MBO binary GL

final energy Lagrangian final energy final energy

final energy

MNIST (random fid) 23223 789 789 798 804

MNIST (non-random fid) 23223 791 792 2167 5363

Banknote Authentication 3308 30 37 51 42

two moons 3802 533 535 538 548

rod 1 (random fid) 4159 146 148 163 159

rod 1 (non-random fid) 4159 88 89 825 391

rod 2 (random fid) 4528 171 176 186 184

rod 2 (non-random fid) 4528 101 105 709 421



Cheeger ratio cut

Two-phase:

min
Ω⊂V

cut(Ω,Ωc)

min(Ω,Ωc)

Equivalent to:

min
u∈[0,1]

TVw (u)

‖u‖1
s.t. m(u) := median(u) = 0.

Equivalent to:

min
u∈[0,1]

max
λ∈R

TVw (u)− λ‖u‖1, s.t. m(u) = 0.

Algorithm: primal-Dual.
Global convex optimization for u.

Ref: Bresson, X., Tai, X.-C. C., Chan, T. F. and Szlam, A. (2013).
Multi-class Transductive Learning Based on l1 Relaxations of Cheeger Cut and
Mumford-Shah-Potts Model. Journal of Mathematical Imaging and Vision,
49(1), 111.
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Test for 4-moon

Figure: (a) True solution, (b) Shi-Malik (c) Our algorithm.



Road condition from online cameras



Thank you!
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