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A general overview of biofilms and their development:

• Biofilms are slimy bacterial colonies that grow, usually, on solid-fluid interfaces.

• Growth can be viewed as occurring in distinct phases; a cartoon:
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• Bacteria within biofilms typically expend less energy ⇒ colonisation of “poor environments”.

• Early or undeveloped colonies ≈ 10µm are vulnerable to removal by antimicrobial agents.

• “Mature” biofilms can grow up to ≈ O(mm) and much less vulnerable to antimicrobial agents.

• Numerous implications in medicine and industry, good and bad.



The role of EPS

• Initial (reversible) attachment to a surface is probably due to electrostatic/van der Waals forces.

• Surface adherence is made permanent by proteinous structures called pili and/or fimbria

◦ ... these structures also allow adherence to near by bacteria (range ≈ 2− 3µm).

• For substantial biofilm expansion, bacteria produce exopolysaccharides

◦ ... or alternatively extracellular polymeric substances - either way EPS.

fimbria EPS

• KEY POINT:

◦ Biofilms with low EPS are slow growing and vulnerable, e.g. to anti-microbial agents.

◦ Biofilms with high EPS are fast growing and are much more resistant to outside effects.



Role of quorum sensing in EPS production (Pseudomonas aeruginosa)
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Problems examined - all have moving boundaries of some sort

Early growth 1-D continuum modelling
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• Surface spread of homogeneous structured “viscous” biofilm. • Depth-based continuum model; conservation of mass of,

• Assumed height/width ratio → 0⇒ thin-film limits ... fluid, solid and EPS phases, diffusion of nutrients.

• using free-and no-slip conditions at biofilm-surface interface. • Used to investigate effect of agents that inhibit growth

• Used to investigate necessary conditions for QS activity. and quorum sensing.

2-D continuum modelling Hybrid individually-based model
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• Extended 1D continuum model to viscous biofilm with no load • Hybrid discrete-continuum approach: bacteria form

• Used to investigate how flow patterns in 2-D structures help particles, whilst EPS, nutrients etc. form a continuum.

or hinder anti-microbial delivery. • Used to simulated action of cold-plasma products.



A 1-D model for biofilm maturation

Maturation



Model of mature phase biofilm growth (Ward 2008)

• Schematic of biofilm (left) and role of growth on movement within biofilm (right):
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• Consider a 1-D depth based model with a moving boundary at z = H(t).

• Movement by cell birth and death (at nutrient dependent rates) are described by a velocity field.

• Nutrients disperse via diffusion and advection from source at z = H(t).

• Quorum sensing regulates enhanced EPS production.



Modelling quorum sensing (P. aeruginosa)

• Quorum sensing is regulated by numerous molecules in and multiple feedback loops – a biologists viewpoint:

1

2

4

3

• Key components are: (1) a signalling molecule (autoinducer made by enzyme LasI), (2) a protein LasR, (3) a

LasR-autoinducer complex which can bind to (4) an activation site on the DNA called a lux-box, such that

◦ Empty lux-box =⇒ cell is down-regulated (φd) =⇒ Low EPS and autoinducer production

◦ Occupied lux-box =⇒ cell is up-regulated (φu) =⇒ High EPS and autoinducer production

• We thus assume the following reaction describing quorum sensing

Down-regulated cell + Autoinducer 
 Up-regulated cell



Model Variables

• Biofilm structure variables: ΦL(z, t) Live cell volume fraction

ΦD(z, t) Dead cell volume fraction

ΦE(z, t) EPS volume fraction

ΦW (z, t) Volume fraction of water

where
ΦL + ΦD + ΦE + ΦW = 1

• Biofilm growth variables v(z, t) Local cellular (or solid phase) velocity

u(z, t) Local water velocity

H(t) Biofilm depth

• Nutrients: c(z, t) Nutrient concentration

• Quorum sensing variables: Φd(z, t) Down-regulated cell volume fraction

Φu(z, t) Up-regulated cell volume fraction

A(z, t) Autoinducer concentration

where
Φd + Φu = ΦL



Dimensionless equations (1-D)

• Recall ΦL + ΦD + ΦE + ΦW = 1 (∗) and ΦL = Φd + Φu.

• Biofilm structure equations

∂t ΦL + ∂z(v ΦL) = ΦL (FB(c) − FD(c)),

∂t ΦD + ∂z(v ΦD) = ΦL δ FD(c),

∂t ΦE + ∂z(v ΦE) = (E0 ΦL + κE Φu)GE(c) − λE ΦE,

∂t ΦW + ∂z(uΦW ) = −ΦL (FB(c)− (1− δ)FD(c)).

• Biofilm growth equations (first equation uses (∗))

∂z((1− Φw)v + Φwu) = (E0 ΦL + κE Φu)GE(c) − λE ΦE,
dH

dt
= v(H, t).

• Nutrients

0 = ∂z(Dc(1−ΦE) ∂zc) − ρΦLFB(c).

• Quorum sensing equations

∂t Φu + ∂z(v Φu) = −FD(c)Φu +αAΦd − βΦu,

∂t Φd + ∂z(v Φd) = FB(c)ΦL − FD(c)Φd−αAΦd + βΦu,

0 = ∂z(DA(1−ΦE) ∂zA) + Φu + εΦL − η AΦL − λAA, ε � 1.

• FB(c) =
c

cB + c
, FD(c) = BD

(
1− τ c

cD + c

)
, GE(c) = FB(c).



Model closure

• Constitutive equation: Relate water to EPS density

ΦW = Φ0 + θΦE,

◦ so that “1− Φ0” is the maximum packing density of bacteria,

◦ and ΦL + ΦD + ΦE + ΦW = 1 ⇒ ΦL + ΦD + (1 + θ)ΦE = 1− Φ0,

◦ thus u(z, t) and v(z, t) decouples to give

(1−φ0) ∂z v = ΦL (FB(c) − (1−δ)FD(c)) + (1+θ)((E0ΦL + κEΦu)GE(c) − λEΦE ),

and

u = − (1− ΦW )

ΦW
v +

1

ΦW

∫ z

0

(E0 ΦL + κE Φu)GE(c) − λEΦE dz
′.

• Boundary and initial conditions used in simulations to follow:

t = 0 : H = H0, ΦL = 1− Φ0, ΦD = 0, ΦE = 0, Φu = 0, Φd = Φ0.

z = 0 : v = ∂zc = ∂zA = 0.

z = H(t) : c = 1, A = 0.



Model simulation

• Biofilm growth, dH/dt ∼ constant as t gets large (left) and up-regulated cell fraction (right):
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• Volume fracs.(left)and autoind./nut. conc.(right) at t=100. Qualitative agreement with observation.
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FB(1) > 0 ⇒ travelling waves (Anguige et al. 2006)

• In the limit ρH2
0/DA → 0, we can show that if FB(1) > 0 ⇒ ∃ constants CL, CU > 0, such that

aL + CL t ≤ H(t) ≤ aU + CU t, as t → ∞.

◦ As ρH2
0/DA → 0, the equations for φL, φD, φE and vc are unchanged, but

∂x(Dc ∂xc) − ψc c = 0,

where 0 < Dmin ≤ Dc ≤ Dmax and 0 < ψmin ≤ ψc ≤ ψmax.

◦ Lower bound (CL): Writing

H =

∫ H

0

dx ≥
∫ H

0

(δφL + φD)

1 + δ
dx = aL +

δ

1 + δ

∫ t

0

∫ H

0

φLFB dx

where aL =
∫ H0

0
(δφL(x,0)+φD(x,0))

1+δ dx, using ∂t
∫ H
0 (δφL + φD)dx =

∫ H
0 φLFB dx.

In the strip x ∈ [H − δ0, H], in which FB − FD ≥ ε0 > 0, comparison methods yields

φL ≥ φmin = ε0(1− φ0)(GEmax
+ 1−BD(1− δ)(1− σ)/BB), FB ≥ FB(cmin),

where cmin = C0 cosh(H − δ0)/ cosh(H). Thus a lower bound for CL is CL = δ
1+δφminFB(cmin).

◦ Upper bound (CU): Integrating the equation for vc we get

dH

dt
= vc(H, t) =

1

1− φ0

∫ H

0

φL(FB − (1− δ)FD + (1 + α)GE) dx

≤ 1

1− φ0

(
1

cB
+GEmax

)(
Dmax

ψmin

)1/2

C0 = CU ,

using the fact (not shown) that c is bounded. The result for the upper bound follows.



Modelling anti-quorum sensing treatment

Maturation



Modelling quorum sensing inhibition stratgies
• Feasible anti-quorum sensing strategies are to target

◦ the protein LasR (boxed in red, e.g. halogenated furanones), Q1.

◦ the autoinducers (boxed in green, e.g. lactonases), Q2.

◦ the protein LasI (boxed in blue, e.g. nothing that I know of), Q3.

• Model modification (noting Φd = ΦL − Φu)

∂t Φu + ∂z(vΦu) = −FD(c)Φu +
αAΦd

1 + γ1Q1
− β Φu,

0 = ∂z(DA(1−ΦE) ∂zA) +
Φu

1 + γ3Q3
+ εΦL −

η AΦL

1 + γ1Q1
− λAA−µ2Q2Q.

where Q1, Q2 and Q3 are sourced at z = H(t) and diffuse into the biofilm according to

0 = ∂z(D1 ∂zQ1)−
µ1Q1ΦL
1 + γ1Q1

− λ1Q1, 0 = ∂z(D2W∂zQ2)− µ2ν2AWQ2 − λ2WQ2, 0 = ∂z(D3 ∂zQ3)−
µ3Q3ΦL
1 + γ3Q3

− λ3Q3.



Treatment simulations

• Effect of each of these treatments on the growth rate of the biofilm dH/dt:

Extreme cases for no treatment Targeting LasR
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Targeting autoinducer (catastrophe!) Targeting LasI
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• With equivalent parameters being equal, for inhibition of growth: Q3(H, t)� Q1(H, t)� Q2(H, t).



In summary

• Biofilm growth is a very fertile area for moving/free boundary enthusiasts. E.g.

◦ the moving interface between the biofilm and surroundings.

◦ contact lines arising from the thin-film models for early biofilm growth.

◦ “etching problems” in biofilm treatment (e.g. via H2O2, O3 introduced by cold plasma).

• Regarding anti-QS treatments, I would suggest targeting LasI

◦ ... though there are plenty of ifs and buts (including that no such agent is known to exist).


