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Defence Science and Technology Laboratory (Dstl)

• MOD’s science and technology experts.

• Provide independent, impartial S&T
advice to MOD and UK government.

• Not just home based. Scientists deployed
to support operations.

• Work with very small companies to
world-class universities, huge defence
companies, government departments and
other nations.

• Deep and widespread research for
immediate and future requirements.

• Trading fund.
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Dstl’s Purpose

To maximise the impact of science and technology for defence and
security of the UK.

• Supply sensitive and specialist science and technology services for
MOD and wider government.

• Provide and facilitate expert advice, analysis and assurance to aid
decision making.

• Lead the formulation, design and delivery of a coherent and
integrated MOD science and technology programme.

• Manage and exploit knowledge across the wider defence and security
community.

• Act as a trusted interface.

• Champion and develop science and technology skills across MOD.
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Hazard Assessment

• In an emergency involving an
accidental or deliberate release of a
Chemical or Biological (CB)
substance there is an urgent need
for a hazard assessment.

• This assessment is delivered in the
form of a hazard area, which details
areas of contamination at known
levels of risk

- Lethality / Incapacitation /
Miosis,

- Probability of infection
(Biological).
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An Example Hazard Area
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Dispersion Modelling

Aim: Prediction of the downwind hazard generated by a chemical or
biological (or other) release.

• Accident response; military
planning; volcanic ash; . . .

• Variety of models
• Gaussian plume (Clarke, 1979)

• Gaussian puff (Sykes et al., 1998)

• NAME (Jones et al., 2007).

• Underpinning capability for the
HASP group.
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Dispersion

• A CB hazard disperses in the
atmosphere and the hazard area is
determined by

- Source Term (dissemination
device, mass, efficiency)

- Meteorology
- Terrain
- Building Interactions.
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Uncertainty

• Dispersion is highly uncertain and outputs need to be translated into
effective information, this requires source inversion and optimization.

• Uncertainty must be propagated in order to provide a complete
answer.

• Uncertainty must be represented in a way that is understandable to
a military commander.

• It has to be useful, if the uncertainty is too large it could be ignored
irrespective of the validity of the calculations.
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Sensor Placement

• Tool developed to aid in the
deployment of CB assets.

• Tool uses a sample of potential
releases and creates a database for
optimization

- Probability of detection
- Warning time
- Distribution of assets across areas

of the battlespace
- Desirability of placement.

• Current research into data storage,
optimization and dependency.

- Ideally the tool would rapidly
optimize for casualties, however,
this an open problem.
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Source Term Estimation

• Source term estimation is a highly uncertain inverse problem.

• A source term estimation model has been developed in order to infer
CB source parameters from sensor readings (Robins et al. 2009).

• Inference is made by hypothesizing potential releases and calculating
their likelihood based on sensor readings and meteorology.

• This likelihood is then combined with various prior distributions to
produce a posterior estimate of the likely source term distribution.

• This posterior distribution is then sampled to produce a hazard
estimate of where contamination is likely, based on the available
data.
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Source Term Estimation

• Existence of a release is given a prior via a surrogate mass
parameter, m∗, all sampled parameter sets with m∗ ≤ 0, denote no
release with m = 0. The prior on the surrogate mass is as follows:

p(m∗) =
1

2µm∗
e
−|m

∗|
µm∗ .

The mean µm∗ is determined according to operational information.
If m∗ ≤ 0, the other parameters are maintained but irrelevant to the
inference.

• Meteorology must also be inferred due to the uncertain nature of the
local meteorological data.
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Source Term Estimation

• Likelihood is calculated using sensor readings via the dispersion
model.

F (c |µ, σ) =

{
0 c < 0

Φ
(

c−µ
σ

)
c ≥ 0

,

where Φ is the standard normal distribution function, c is
concentration and µ, σ are the mean and variance of the
concentration produced from the dispersion model.

• Source parameters are multi-dimensional and contain 15 parameters
including location, time, mass, u and v components for meteorology,
surface components and agent.

• Meteorological parameters are inferred via readings provided to the
system in a similar ways to CB sensor readings.

14 / 32



Source Term Estimation - Proposals
• Proposals via Differential Evolution Markov Chain (DE-MC): Given
M chains, new hypotheses update each chain end θi

t , for
i = 1, ...,M.

1. Select θi
t ;

2. Randomly select 2 additional chain ends, (θj
t , θ

k
t ) where j , k 6= i ;

3. Sample ε ∼ S ;
4. Propose:

θ∗ = θi
t + γ

(
θj

t − θk
t

)
+ ε

S = N
(
0, σ2

)
for small σ, and γ is a multiplication factor that

restricts ‘step size’.
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Source Term Estimation - Computation

• Posterior sampling is complex due to the large number of parameters
and the ‘witches hat’ form of the posterior across these dimensions.

• Posterior computation undertaken using a bespoke algorithm based
upon Sequential Monte Carlo (SMC) and Sample Importance
Resample (SIR):

- Update weights of each hypothesis
- Normalise weights so total weight is equal to number of samples Neff :

Neff =

(
N∑

i=1

wi

)2

N∑
i=1

w 2
i

- Resample according to weights.
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Source Term Estimation - Sampling

• An operational system must determine if a hazard is present, the
probability of release is calculated as

P (m∗ > 0|D) =

P (m∗ > 0)
∑
ij

wij I (m∗i > 0)

P (m∗ > 0)
∑
ij

wij I (m∗i > 0) + (1− P (m∗ > 0))
∑
ij

wij I (m∗i ≤ 0)

- P (m∗ > 0) is the prior probability of release
- wij is the j th weight of the i th hypothesis
- I (m∗

i > 0) is an indicator function that returns one if the
hypothesized mass is strictly positive (i.e. m∗ > 0; a possible
release) and zero otherwise (no release).
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Source Term Estimation - Sensor Alarm
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Source Term Estimation - Inference
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Source Term Estimation - Prediction
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A Hazard Chain

• A hazard area is calculated in a number of separate steps:
- Inputs

• Meteorology
• Source - Mass, Release mechanism etc.

- Dispersion Model
- Dose Calculation
- Dose response curve.

• Each step is complex with numerous inputs and model choices.
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A Hazard Chain
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Uncertainty Quantification

• Currently the biggest limitation to accurate hazard prediction.

• Each step in the modelling chain has inherent uncertainty from
numerous sources.

• Naively, simulation studies could be used to understand the
uncertainty in predictions

- Typically models are too computationally expensive
- Model inaccuracies must also be accounted for
- Statistical models must be combined with real data at differing

points in the modelling chain.

• Each step is time consuming, however, answers are required in real
time.

• Uncertainty must be communicated effectively.

23 / 32



Emulation

• An initial study into the potential use of emulators focused on the
emulation of the underpinning dispersion model.

• Research suggests that while emulation is possible there are
significant challenges:

- Input parameters can result in significantly different functional output
- Output is functional but also in several different forms
- Meteorological and terrain constraints may require an emulator to be

developed for each location.
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Multivariate Emulation
• Let x i = (x1i , . . . , xq1i ) be the vector of input values at which the ith

run of the simulator is performed.

• Let Y i = (Y1(s1), . . . ,Yr (s r ))T be the vectorised output from this
run .

• The vector s j = (s1j , . . . , sq2j ) locates the jth output in the q2
dimensional output domain.

• Dimension reduction is obtained through assuming, for each output
vector, the linear model

Y i =

p∑
k=1

ak (s)βk (x i ) + e i .
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Multivariate Emulation

• Linear Model

Y i =

p∑
k=1

ak (s)βk (x i ) + e i .

• Here a1(s), . . . , ap(s) are a set of r × 1 basis vectors which are
assumed independent of x i but which may depend on the indexes
s = (sT

1 , . . . , sT
r )T.

• The corresponding coefficients β1(x i ), . . . , βk (x i ) may depend on
the inputs x i , and e i is a r -vector of errors resulting from the basis
function approximation.

• Let β(x i ) = (β1(x i ), . . . , βp(x i ))T.
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Application to Dispersion
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A Typical Dosage Output from the Dispersion Model Output on a Log
Scale.
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Emulation Approaches

• Three emulation approaches are applied and compared

1. A fully Bayesian approach using a principal components basis (PC
emulator; Higden et al. 2008).

2. A fully Bayesian approach using a thin plate spline basis (Wood
(2003)) and assuming independence of the elements of β(x i )
(Independent TPS emulator).

3. A “plug-in” Bayesian approach using a thin plate spline basis and
assuming a separable covariance structure (Rougier(2008)) for β
(Separable TPS emulator).

• Posterior predictive distributions for emulators 1 and 2 are obtained
via MCMC and W s(s) = Ip, within run correlations are assumed to
be independent - overconfidence can result in emulator 2.

• The posterior for emulator 3 is obtained via a plug-in approach.
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Emulator Comparison
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TPS emulators calculated using the posterior predictive mean across the
test set.
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Communication

• The overall Hazard area is highly uncertain, however information
must be conveyed in a concise and clear manner for decision makers.

• Large uncertainties can be counterproductive - a course of action
must be obvious.

• Underestimation of the hazard area could have severe consequences
and must be avoided (over-estimation is far more acceptable within
the bounds above).

• Spatial uncertainty is difficult to portray and this is an open problem.
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Conclusions

• Hazard assessment is a complex problem involving:

- Multi-objective optimization of large multi-dimensional data sets.
- Source Inversion under complex meteorological conditions in real

time.
- Propagation of uncertainty through highly complex modelling chains

in real time with multiple uncertainty types.

• There are tools under development, however, the concatenation of
these tools and their enhanced development are open problems.

- A method of optimization over a multi-objective, multi-dimensional
space.

- An integrated modelling chain capable of source estimation and
prediction in real time.

- Uncertainty propagation in real time through the modelling chain.
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