Mathematical and Computational Approaches To Understanding Microbial Communities

Tom Curtis

Outline

- The Power of the Microbial World
- The Need for Mathematics Tools
- The Kind of Tools We Need
- Maths Computation and the Rate of Innovation

Microbial Communities

• 100s-1000s of species

- Most very poorly characterized
- Amazing things in hard to control environments

Microbial Cultures

- 1-3 "domesticated" species
- A small number of well characterized models
- Amazing things, in controlled environments

The Economy of Promises...

"The ability to routinely write the software of life will usher in a new era in science, and with it, new products and applications such as advanced biofuels, clean water technology, and new vaccines and medicines. "

http://www.jcvi.org/cms/research/projects/first-selfreplicating-synthetic-bacterial-cell/overview/

Exxon & Synthetic Genomics

- 2009: 3-600 million USD committed to Synthetic Genomics
 - Fuels "in a decade"
- 2014 Program abandoned after 100 million Dollars expenditure
- Long term funding for Synthetic Genomics
 20 year time horizon

Engineering is not mere aspiration

Jules Verne

Werner von Braun

John Smeaton: 1724 - 1792

- Father of Civil Engineering
- Eddystone lighthouse

Smeaton + Hexham Bridge

- Old Bridge
 - Washed out in 1771
- Smeaton Builds New Bridge
 - Washed out in 1782
- Smeaton invited to build THIRD bridge
 - Declines to "chance my reputation"

HEXHAM BRIDGE, AFTER THE FLOOD.

These server naily extensions in the second naily extensions in the second naily extension of th

Severan Bridge, Turkey ~200 AD

Causey Arch, Built 1725

Inspired by 19th Century Engineering

The Forth Rail Bridge

- Innovations
 - New materials
 - Standardization
 - Modularization
- Predictive Theoretical Description of Whole System

William John Macquorn Rankine

- Glasgow Regius Prof. of Civil Engineering 1853-82
- Rigidity of structure (with Maxwell)
- Thermodynamics of engines (Rankine) cycle
- Design of Dams
- Geotechnical engineering

The Harmony of Theory and Practice in Mechanics (1853)

- "avoids risks, but stops the progress of all improvement"
- "Lavish expenditure of material and labour"
- "Failure within a limited number of years"

 "Misdirected ingenuity....vain pursuit of unworkable innovations A MANUAL

APPLIED MECHANICS.

OF

B¥

WILLIAM JOHN MACQUORN RANKINE, CIVIL REGINERE: M.D. TRIN. COLL. DUB.; P.B.83. LOSD. AND RDIN.; P.B.R.A.;

With Humerous Diagrams.

TWENTY-FIRST EDITION.

We do have theory..

Downing et al.,1964

Lawrence and McCarty 1970

We don't have much theory We don't have much time

• Urbanization to hit 4 billion

• Energy prices to double

• CO₂ to rise with unknown consequences

Fuel Efficiency of New UK Registrations

Latest figures for energy use in the UK Water Industry

Figure 3 – Energy used for operational purposes and administrative functions (2002/03 – 2008/09)

Source UK Water

Anaerobic Treatment of Domestic Wastewater: in Brazil

- Eg Belo Horizonte Minas Gerais
- Large Scale Technology
- PE 1,000,000
 - 1800 litres /second

www.copasa.com.br

Anaerobic Treatment of Domestic Wastewater in the UK

- Cranfield University
 - ST and Yorkshire
 Water
- Best Performance of such a reactors
- Temperature sensitive >10 °C

Bowen et al., 2014

Methanogenesis in the High Arctic

Neutral Theory:

Random sampling from a reservoir

θ

- At a rate (per death)
 m
- Into a community of size N_T

Sloan et al., (2006) Environmental microbiology

Mathematics and Molecular Ecology

Probability of new bacteria invading

Nitrifying bacteria labelled with fluorescent gene probes

Methane Production on domestic wastewater with an Arctic Seed

Petropolous et al in prep

Microbial Electrolysis Cell: Make Hydrogen from Sewage

First Pilot Test on Domestic Wastewater Sarah Cotterill

Fail Early, Fail Often

- Our first pilot "failed"

 All success begins as failure
- Cycles of prototypes lead to success
- Credible pilot plants are
 - expensive and
 - Slow
 - A nuisance
- But do it anyway

Thanks to Motts Newcastle

The simulation of large systems is possible

- One Activated plant
 - 10¹⁸ individuals in a treatment plant
 - 3000 species
 - More genes than the human genome
- Big systems can be modeled

Simulation of lead ion collision in the ALICE detector

In Silico Simulation of Wastewater Treatment

Mathematics and Computation

Essential to fully exploit the power of the microbial world

- Tools we have are not yet good enough
 But we are working on it
- Mathematics and computation is "cheap"
 - But "leverages" microbial science base
 - But need more engagement/cultural change