Pixel-based Beamforming for Ultrasound Imaging

Richard W. Prager and Nghia Q. Nguyen
Outline

- Introduction of Ultrasound Imaging
- Image Formation and Beamforming
- New Time-delay Calculation
- Results
- Conclusions
Outline

- Introduction of Ultrasound Imaging
- Image Formation and Beamforming
- New Time-delay Calculation
- Results
- Conclusions
Ultrasound Imaging

US scanning

Imaging (RF) data

B-mode

Scanning flexor tendon using ultrasound

- Pulse-echo Imaging, using acoustic wave/pressure to form images
- Frequency range: 1 - 40 MHz
- Many applications imaging soft tissue in clinical medicine (not good for air or bone)
Outline

- Introduction of Ultrasound Imaging
- Image Formation and Beamforming
- New Time-delay Calculation
- Results
- Conclusions
Image is generated line-by-line using fixed focused transmit and dynamic receive focusing → image resolution is only optimal around focal depth, (transmit focal depth problem).

Synthetic scan-lines are interpolated between actual scan-lines, (interpolation problem).
Beamforming

Store the raw received data from all the transmitted beams.

This enables us to solve both problems:

- **Fix interpolation problem**: perform individual focus calculations for each pixel.
- **Fix the single transmit focal depth problem**: combine information from several beams to improve the focusing away from the focal depth.

To focus using data away from the centreline we need the travel times for these points.
Time-Delay Calculation: Conventional Approach

Using geometrical optics approximations

Assuming that the transmitted pressure field is spherical and generated from the center of the active aperture

Used in convex array systems with data compounding limited to two transmit beams (Lee et al., IEEE Trans. UFFC, 59(3):573-582, 2012.)
A virtual source is assumed at the focal point. This generates a spherical wave.

The assumption is valid only within a limited angle (shown by the dotted lines). Imaging data outside the angle is currently discarded.

Creates artefacts around the focal depths because of the discontinuity in the spherical wave approximation.

Transmit beams can be made more broad with the focal depth outside the imaging region (SA-BiPBF: Kim et al., IEEE TBE, 60(10):2716-2724, 2013.)

\[
\tau_i = \frac{d \pm a}{c} + \frac{\sqrt{(x_p - x_r)^2 + (z_p - z_r)^2}}{c}
\]

\(d\) – focal length
Outline

- Introduction of Ultrasound Imaging
- Image Formation and Beamforming
- New Time-delay Calculation
- Results
- Conclusions
Goal: Maximize data compounding at individual pixels.

- The virtual source approach is only valid in some places.
- A better approximation is to describe the beam at each point in terms of two pulses of varying amplitude.
New Time-Delay Calculation (I)

\[\tau_0 \] – delay between the transmit time at the edge and centre of the active aperture.

\[\tau_{\text{trans}} = \frac{R_{\text{min}}}{c} - \tau_0 \]
\[= \frac{d - a}{c} \]
New Time-Delay Calculation (II)

\[\tau_{\text{trans}} = \frac{R_{\text{max}}}{c} - \tau_0 \]

\[= \frac{d + a}{c} \]
New Time-Delay Calculation (III)

\[
\tau_{\text{min}} = \frac{R_{\text{min}}}{c} - \tau_0 \quad \text{and} \quad \tau_{\text{max}} = \frac{R_{\text{max}}}{c} - \tau_0
\]

\[
\tau_{\text{trans}} = \frac{\text{dist}(B_2, B)}{\text{dist}(B_2, B_1)} \tau_{\text{min}} + \frac{\text{dist}(B_1, B)}{\text{dist}(B_2, B_1)} \tau_{\text{max}}
\]
Outline

- Introduction of Ultrasound Imaging
- Image Formation and Beamforming
- New Time-delay Calculation
- Results
- Conclusions
Demonstration

<table>
<thead>
<tr>
<th>Beamformers</th>
<th>Focal depth</th>
<th>No. of beams per scanline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Focusing</td>
<td>20 mm</td>
<td>1</td>
</tr>
<tr>
<td>Conventional Pixel-based</td>
<td>20 mm</td>
<td>64 and 8</td>
</tr>
<tr>
<td>SA-BiPBF</td>
<td>40 mm</td>
<td>64</td>
</tr>
<tr>
<td>Unified Pixel-based</td>
<td>20 mm</td>
<td>64</td>
</tr>
</tbody>
</table>

(proposed method)

All images have a depth range from 3 mm to 34 mm
Simulated Results

Point targets

Dynamic focusing

Con. PB (64)

SA-BiPBF(64)

Unified PB (64)
Lateral Profiles

At 5 mm

At 12.5 mm

At 20 mm

At 27.5 mm

Dyn.
Con. PB
SA-BiPBF
Uni. PB
Phantom scanning
Phantom results

Dynamic focusing
Con. PB (64)
Con. PB (8)
SA-BiPBF (64)
Unified PB (64)
In vivo results

Dynamic focusing

Conventional PB (8)

Unified PB

FPL = Flexor Pollicis Longus tendon

APB = Abductor Pollicis Brevis muscle
Outline

- Introduction of Ultrasound Imaging
- Image Formation and Beamforming
- New Time-delay Calculation
- Results
- Conclusions
Conclusions

- Good performance of the proposed unified PB beamforming comes from the highly focused beam on transmit and dynamic time delay calculations on receive.

- The time-delay calculation still uses the geometric optics approximation which makes for simple implementation but limits us to the use of only one data point per received waveform.

- The method leads to enhancements in image quality in both phantom and *in vivo* studies.

Acknowledgements: Dr Laurence Berman for performing and interpreting the *in vivo* scans.