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Inverse Problem

We have a function y=f(x)

We collect some data on y and we want to make
some inferences about x

We can set up some loss function or likelihood e.g.

> (i — flxi)?

And optimise it



Bayesian Methods

e Alternatively we can use Bayes theorem to do the
Inversion

p(zly) =

* We can calculate the posterior distribution of x|y



But

* In general these calculations are ditticult
* [hey are expensive.
* Likelihoods and posteriors are often multimodal

e |t doesn’t take Into account the fact that the
model f(.) isn’t perfect



An Alternative

Don't try to find the ‘best’ set of inputs ()

Find inputs (z) that are implausible given the data

(y)

This Is a |lot easier
No optimisation

No sampling posterior



History Matching

e Set up a measure of the distance between the data
and the model prediction

- JE(y— f(x))?
e = \/ Viy = f(2))

e |f this distance is too far. That value of z Is
implausible



We can expand the variance term to give

Imp =

\/ (y — E(f(x)))>2
Vy T Vf(ﬂ?)

Where V, is the variance of y
and V;¢,) is the variance of f(z)

—or Imp >3 we say that the inputs (z) are
implausible (Pukelsheim (1994))




* pbut could be expensive to run in which case we
can only compute Imp in a small number of places

* Replace f(z) with an approximation f*(z)

e This is known as an emulator (or surrogate or
metamodel)



The Gaussian Process
Emulator

We use Bayesian Gaussian Process emulators
Set up a prior model for the emulator

Run the model in a designed experiment to span
space in a sparse manner

Calculate the posterior

Validate the posterior



(Gaussian Processes

e A Gaussian Process is a distribution over functions

e A stochastic process where all marginal, joint and
conditional distributions are Normal

e |tis defined by a mean function and a covariance
(or correlation) function



The Mean Function

e Although the theory allows us to have a general
mean function we normally use a linear basis
function

Often we take the h(.) functions as monomial
terms in a polynomial expansion




The Covariance Function

* Assuming stationarity the covariance function
consists of two parts

o*c(]|z1, z2||)

o< Is the variance of the Gaussian Process

c(.,.) is the correlation function that gives the
correlation between two points z; and zz as a function
of the distance between them




Some Correlation Functions

Correlation function Formula Differentiable?
Exponential power (dg < 2) exp (—d®) No
(Gaussian exp ( d2) Infinitely
Matérn (general) 2 52()) (v/200d) % Ks, (v200d) |00 | times
Matérn, 09 = % (1 + \/_d) exp ( \fd) Once
Matérn, 09 = g (1 +/5d + %dQ) exp (—\/gd) Twice




The Prior

Set up a prior mean function
p(x) = h(z)"

Often a low order polynomial sometimes more
complex

Choose the form of the correlation function

Usually use vague priors on the GP parameters



Design

 We want designs that are sparse but also space
filling

e Latin hypercubes

e [ow discrepancy sequences (Sobol sequence)



The Latin Hypercube

Latin hypercubes fill space on the margins but
not jointly

What is a good space filling Latin hypercube?
Maximin

Orthogonal designs



The Latin Hypercube
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1The Posterior

* Once we have run the simulator/model we can
calculate the posterior GP - the emulator

* Note the posterior Is a stochastic process

* Often we just show the mean and variance
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Validation

e Building emulators isn't hard
* Building good emulators can be
* |mportant to validate any emulator
* Leave one out
* Residual Analysis - Bastos and O'Hagan (2009)

e Separate validation experiment



The Forward Problem

e \We can use a validated emulator for:-
e prediction
e sensitivity analysis

* uncertainty analysis



Calibration

 Kennedy and O'Hagan (2001) calibrate a model
using two GPs fitted simultaneously. One as an
emulator and one for the model discrepancy

* |n practice hard to do without prior information (see
Brynjarsdoéttir and O'Hagan. 2014)



History matching revisited

* Returning to history matching

* The implausibility equation is

- JE(y— f(x))?
e = \/ V(y— f(2))




Expanding the variance as before gives

I — \/ y — E(f(x))’

Vy =+ Vemul =+ Vdisc

v, Is the variance of the data y

V.my: 1S the emulator variance

* Viisc IS the model discrepancy



Proceqgure

Collect data
Run designed experiment
Build emulator

Perform history matching

All points with Imp <3 deemed not implausible
If we have many metrics take maz (Imp)

These constitute the Not Ruled Out Yet (NROY) space



Design additional experiment within NROY space
(wave 2)

Rebuild emulator

Istory match

Repeat until NROY is either small enough or does
not shrink

At which point we may need more data
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History matching on cardiac cell

model with 13 uncertain parameters

A single observation (mean =200, sd = 15) (made
up)

No discrepancy
130 model runs in maximinLHC

Rules out 24% of 13-d space
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A more discriminating example
* mean = 450, sd =5

* Only 13% space left
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ORCAZ

State of the art ocean model 2° resolution
‘Climatological’ forcing (Normal years)

Matching temperature at 8 depths with EN3
climatology

Removes 95% of parameter space. (Wave 1)
Adding salinity

Thanks to Danny Williamson and Adam Blaker
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Constrained by
temperature and
salinity
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Constrained by
temperature and

salinity
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Discrepancy

None of our models is perfect
Kennedy and O’Hagan estimate discrepancy
In history matching it is an input

We need to elicit it



Pertect’ models

In a ‘pertect’ model V5. = 0

Add ‘perfect’ data -> v,=0

(y — E(f(x))°

Vemul

Imp =

Both of these go to zero as we increase the number of
model runs (under our assumptions)

But which goes fastest?



Stochastic Models

So far all the models have been deterministic
But we can generalise to stochastic models
Emulate mean and variance of the model

Split the discrepancy into a stochastic part (model
variance) + the discrepancy

Andrianakis et al (2015)



Random Effects

Some models should be fitted to individuals (e.qg.
cardiac models)

But we aggregate data across groups

his adds an additional uncertainty

Data variance or additional discrepancy?



lolerance to error

Often our NROY space will go to zero as we add
more waves of model runs

This implies the discrepancy variance is too small

An alternative interpretation is that the discrepancy
IS our tolerance to error

How bad are we prepared to let our models be to fit
the data”



Research Areas

 \WWhich metric to match?
e Combining metrics

o Maz(Imp) (Vernon et al 2010)

e Second, third largest

 Multivariate methods
Imp* = (y — E(f(x)))" Var(y — E(f(x)))" (y — E(f(z)))



e Spatial methods and dimension reduction
e Relating different models to each other
e For an interesting application in ABC (approximate

Bayesian computation); see Richard Wilkinson’s
2014 ArXiv paper



Conclusions

e History matching (and GP emulators) allows us to
do inverse problems without optimisation (or
estimating posteriors)

 Even if we want to do conventional methods in the
final NROY space, for example we may need a
posterior, because of the limited region we expect
the function to be much better behaved.



