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Regenerative medicine 

• “Replacement/regeneration of cells/tissues/organs 

to restore normal function”… 
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In vitro tissue engineering 
 Growth of tissues for implantation (e.g. bone) 

 Toxicology screening, drug testing (NC3Rs) 

 High demand – shortage of donor tissues 

 2009/10: ~8000 waiting; 552 deaths 

 Generation of tissue with in vivo properties… 

 

Mechanics Cell signalling Biochemistry Adhesion… 

Tissue-level properties 

Modelling: (i) Quantitative understanding of complex problem 

       (ii) Emergent tissue-level properties 

 



TE bioreactor system1 
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 Perfusion enhances nutrient 
delivery 

 (Mechanotransduction) Bone 
cells sensitive to  
 Compressive strain 

 Fluid shear stress 

 Mineralisation enhanced, 
localised in regions of stress 

 

1 AJ El Haj et al. ISTM, Keele University 

I. Phenomenological 

model 
 Mechanotransduction 

 Cell-cell/cell-scaffold 
interactions 

II. Micro to 

Macoscale 
 Microscale FBP 

 Emergent macroscale 
model 



I Phenomenological model 
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Aims 

 Develop a continuum macroscale model 

 Accommodate: 
1.  Cell-cell interactions  2.  Scaffold adhesion 

3.  Mechanotransduction  

 Obtain a minimal framework 

Multiphase approach 

 Describe tissue as sets of interacting ‘phases’ 

 ‘Continuum mechanics’-type PDEs 

 Naturally accommodates interactions within 

biological tissue 



I Multiphase model – detail  
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Phases 

 Cells, culture medium: 

 Substrate: PLLA scaffold, deposited ECM 

 Viscous fluids contained within porous scaffold 
 

Governing equations 
 

 Mass: 

 Momentum: 

 

 
Mechanotransduction 

Viscous drag + active forces 

Cell aggregation 

Cell-scaffold adhesion 



I Multiphase model – investigations  
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1. Geometry (2D vs 1D) 
 

 
2. Cell-scaffold interaction model 

 

 

 

3. Scaffold heterogeneity 

 

 

vs. 



1. Results – geometry  
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Model predicts characteristic morphology due to culture conditions 
and regulatory mechanisms 

 

 

How important is it to solve the full 2D equations? 

 

… not very! 
 

… not very! 
 



2. Results – adhesion 
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Simple adhesion model gives identical results! 
 

 



2. Results – scaffold heterogeneity 
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II Micro vs. macro models 
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 Tissue growth is inherently a multiscale process 

 Phenomenological (macroscale) models 
o        ‘Convenient’ 

o        Differ widely; neglect microscale phenomena 

Aim: Derive a macroscale formulation able to embed 

microscale dynamics 
 

Multiscale methods exploit scale separation to do this 

Aim: Derive a macroscale formulation able to embed 

mesoscale dynamics 
 

Multiscale methods exploit scale separation to do this 



II Growth as a microscale FBP 
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 Consider nutrient-

limited growth in a TE 

scaffold 

 Rigid porous scaffold 

 Viscous culture medium 

 



II Growth as a microscale FBP 
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 Consider nutrient-

limited growth in a TE 

scaffold 

 Rigid porous scaffold 

 Viscous culture medium 

 

Fluid flow: 

Nutrient transport: 

Nutrient uptake: 

Growth: 

on 



Macroscale model 
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 Separate microscale (x) and macroscale dependence (X)  

 ‘Average’ microscale equations over the pore domain, … , obtain 

macroscale flow, transport equations: 

 

  

Flow 

Influenced by 

microstructure 

  

Flow 
Influenced by 

microscale 
growth 

      

Transport 

Influenced by 

microstructure 
and growth 

Transport 

Influenced by 

uptake and 
growth 



Macroscale model – results  
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Flow/nutrient 



Summary 
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Phenomenological model 

 Continuum macroscale model for TE applications 

 Accommodates: 
1.  Cell-cell interactions ;     2.  Scaffold adhesion; 3.  Mechanotransduction  

 Investigated a minimal framework 

Multiscale analysis 

 Rigorous development of macroscale growth model via 

microscale FBP formulation 

 Obtain fully-coupled growth/flow/transport within well-studied 

PDE formulation 
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Thanks! 

AJ El Haj 
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JM Osborne, J Whiteley MR Nelson 
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Multiscale analysis 
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