MICROBIAL DYSBIOSIS – A PERSONAL CARE PERSPECTIVE.

BARRY MURPHY MICROBIOMICS UNILEVER
Unilever is one of the world’s leading suppliers of fast-moving consumer goods.

Our products are sold in over 190 countries and used by 2 billion consumers every day.
OUR COMPASS STRATEGY

Our vision is to double the size of the business, whilst reducing our environmental footprint and increasing our positive social impact.

The Compass provides a blueprint for success by identifying what we must do to win share and grow volume in every category and country.
OUR €1 BILLION BRANDS

14 Unilever brands have a turnover of €1 billion or more
INTEGRATED R&D

- More than 6,000 R&D professionals
- Six key R&D sites delivering groundbreaking technologies: Bangalore (India), Colworth (UK), Port Sunlight (UK), Shanghai (China), Trumbull (US), and Vlaardingen (NL)
- 92 locations around the globe with R&D teams implementing innovations in countries and factories
UNDERSTANDING MICROBIAL COMMUNITIES

- Key to a number of Unilever categories.
- Microbial communities implicated in malodour, multiple skin conditions and caries.
- Heightened need to understand the roles of communities and of individual organisms.
- When trying to understand the community it is essential that we do not forget about the host!!!
MICROBIOMICS IN UNILEVER

- A move away from the traditional culture based methods.
- Evolved from 454 to Illumina sequencing.
- Efficient sampling methods for a number of category interests.
- Bioinformatic pipelines in place to process data for taxonomic classification.
- While a shift to microbiomics over plates has its advantages there are disadvantages also.
IMPORTANCE OF MICROBIAL COMMUNITIES

- **Deodorants** – Major routes to malodour are VFA’s, Odorous steroids and Thioalcohols.
- All are produced by the microbial breakdown of non odorous precursors found in human sweat.
- *Staphylococcus* and *Corynebacterium* implicated in axillary malodour.
- Host genetics important – ABCC11 protein necessary for transport of AA linked thioalcohol precursors.

James et al., 2012; Harker et al., 2014
IMPORTANCE OF MICROBIAL COMMUNITIES

• **Oral Care** - *Streptococcus mutans* strongly linked to caries formation.
• Importance of biofilms in oral care – plaque.
• Production of acids and endotoxins in anaerobic conditions leads to numerous conditions
• *Porphyromonas gingivalis* known to be a “key stone” species in periodontitis.

Srinivasan et al., 2013, Adams et al., 2003
IMPORTANCE OF MICROBIAL COMMUNITIES

- **Scalp Care** – Malassezia and *Staphylococcus* spp. implicated in dandruff.
- Outgrowth of particular species associated with dandruff but incomplete understanding.
- Host genetics are possibly important.
- Transcriptomics have been used to elucidate the mode of action of a number of actives.

James et al., 2013; Turner et al., 2012
VISUALISING MICROBIAL COMMUNITIES

Plaque

Tongue

Orange/red – tongue
Blue - plaque

Heatmapper
Microbiviz
Cytoscape
FLUX BALANCE ANALYSIS

Relatively simple analysis when kinetic data is available

Essential in biotechnology in order to improve metabolite production
FLUX BALANCE ANALYSIS

Much more complicated when whole cells are used in this context

How can we model these relationships? How much data do we need?
FLUX BALANCE ANALYSIS IN “PURE” CULTURE

- Using RNA seq data to determine expression profiles in response to actives.
- Possible to use data to develop *in silico* constraint based models for further analysis.

- Numerous assumptions being made including that the population is homogenous.
- Also does not represent the true state of the organism *in vivo* with regard to community interactions.
SYSTEMS BIOLOGY: BOTTOM UP APPROACHES

- Cultivation approaches will result in dominant/less fastidious taxa being analysed. Must go beyond barcode analysis.
- Does not take into account interactions between community members (+ve/-ve/neutral) and host/environment.
- Genome Scale Metabolic Reconstruction
- Will this form of analysis even be needed in the future. What is there v’s what are they doing?
SYSTEMS BIOLOGY: TOP DOWN APPROACHES

• Can target whole community but lack of resolution.
• May allow the study of community interactions without knowing key members.
• Requires the integration of multiple datasets across species.
• Genomics leading the way but other techniques need to evolve further.
• Better datasets and databases are needed, Kyrpides et al., 2014.
WHAT WILL THE FUTURE HOLD?

• Multi-integration strategies (Weight)

• Predictive modelling can be used to evaluate intervention routes, quicker/cheaper/safer.

• Can predictive models be used to determine the effect of broad spectrum antimicrobials / hurdles.

• Community model where affect of removing a particular species is revealed. How will the remaining members adapt to fill the niche?
ACKNOWLEDGEMENTS

Port Sunlight
Sally Grimshaw
Suzi Adams
Joanne Hunt
Jane Shaw
Dave Arnold
Sara Johansson Fernstad
Noel Ruddock
Mark Harker
Svetlana Riazanskaia
Janette Jones
Clive Harding

Shanghai
Wentao Peng
Tiger Huang
Elaine Xu
Mike Hoptroff

Colworth
Adrian Smith
Jenny Pople
Rebecca Ginger

University of Warwick
Chris Quince

University of Liverpool
Neil Hall
John Kenny
Christiane Hertz-Fowler

University of Glasgow
Umer Ijaz