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Mathematics of Flow in Porous Media 

• Conservation of Mass 

• Conservation of Momentum 

– replaced by Darcy’s law 

 

 

• Conservation of Energy 

– most processes isothermal 

• Equation of State 
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• Parabolic equation for pressure 

 

 

 

• Hyperbolic equation for saturation 
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Equations governing flow 



Data Collection 
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Model Calibration: Teal South 
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Range of Possible Values for Unknown Parameters 
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Particle Swam Optimization (PSO) 

• A swarm intellegence algorithm (Kennedy & 
Eberhart,1995). 

• Particles are points in parameter space. 

• Particles move based on their own experience and that 
of the swarm. 

• PSO equations 

 

 
 

 

 

−  r1, r2 are random vectors 

−  w is the inertial weight 

−  c1, c2 are the cognition and social acceleration components 
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Dominance and Pareto Optimality 

Solution 𝐱𝟏 dominates solution 𝐱𝟐, if : 

1. 𝐱𝟏 is no worse than 𝐱𝟐 in all objectives, and 

2. 𝐱𝟏 is strictly better than 𝐱𝟐 in at least one 
objective 
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Obj 1 

Pareto front 

Image of Pareto optimal set in 
objective space 
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• MOPSO equations 

 

 
 

 

−  r1, r2 are random vectors 

−  w is the inertial weight 

−  c1, c2 are the cognition and social acceleration components 

• Pbest and Gbest now sampled from Pareto archive 

MO Particle Swam Optimization (PSO) 



Why Use Multi-Objective? 

• Sum of objectives – limited exploration of Pareto front 

– Example minimising two objectives 

Objective sum Multi-Objective 

Figure from Hajizadeh, PhD Thesis (Chapter 6, Figure12), Heriot-Watt, 2011 
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Model Calibration 

• Called ‘History Matching’ in oil business 

• Synthetic example 

– IC Fault Model 

• Real example 

– Zagadka Field 

 



IC Fault Model 

* 

* Data from Z. Tavassoli, Jonathan N. Carter, and Peter R. King,  

  Imperial College, London 

• Synthetic 2D Model 

• 2 Wells: 1 Inj, 1 Prod 

• 6 Layers 

• 1,3,5 Poor Sand (blue) 

• 2,4,6 Good Sand (red) 

• 1 Fault 

 

• 3 Uncertain Inputs: 
1. khigh = [100,200] mD 

2. klow  = [0,50] mD 

3. throw = [0,60] ft 



IC Fault Model 

p : oil/water rates 

Truth Profile (Observed) Observed  

khigh = 131.6 mD 

klow = 1.3 mD 

throw = 10.4 ft 

Misfit Definition: 

• Simulator controlled to match BHP at 
the wells 
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IC Fault Model Misfit Surface 

high low 

misfit 

klow 

khigh 

throw 

Database (DB) 
159,661 uniformly generated models 

truth 



Convergence Speed – 20 Runs 

MOPSO 

SOPSO 

Iteration 12 

Iteration 28 



Zagadka Field 

• Waterflood/aquifer support 

• 95 wells in 10 groups 

• 15 years history 

• Compartmentalized 



Model 4 Convergence (PSO) 
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Model 4 Field Level History Match 

• Match with PSO (single objective) 

• 250 simulations (overnight, 12 core 
workstation) 

Field oil rate Field water rate 



Match on Group Rates – Single Objective 

 



Multi-Objective vs Single Objective 
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Multi-Objective Trade Off 

• MO balances changes to fit one quantity 
vs another 



MO Not Always Faster than SO 

• Study on EoN field 



Histogram of 10 Final Misfits 
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Forecasting with MO 

• Generic Bayesian integral 

 
 

 

• MC approximation 

 

 

• Resample to calculate P(mk)dVk 
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Calculating Weights for Sample 

• Gibbs sampler 

– Assume misfit constant in Voronoi cell 



Single & Multi Objective HM for PUNQ-S3  

Based on real field 

 

An industry standard 
benchmark 

 

Multiple wells and production 
variables 

 

Algorithm used: PSO 

 



SO vs. MO – Forecasting  
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Field Development Optimisation 

• Based on Scapa field 

– Original HM done as part of MSc project 

– HM to field rates (from DECC website) 

– Wells are different from real field 

• 4 injectors, 4 producers 



Field Level History Match 

• Match to first 10 years of history 

– Remaining data used to check forecast 



Optimisation 

• Multi-Objective 

– Maximise cumulative oil (FOPT) 

– Minimise maximum water rate (FWPR) 

• Optimisation variables 

– Well locations (16 variables – i, j for each well) 

– Injection well rates 



Field Development Optimisation (Scapa) 



Optimise Field Development Plan 

Original MSc development plan 
(4 injectors, 4 producers) 

10% 

55% 

77 models 

Current Scapa  production 



Scapa: Optimise Mid-Life Infill Wells 

Trade-off :  
1.5 bbls oil in year 10 
for 1 bbl  oil in year 2  



Optimisation Under Uncertainty 

• PUNQ-S3 

 

• Multiple HM models 

 

• Optimise infill wells 

 



Optimisation Under Uncertainty 

Uncertainty in Cumulative Oil 
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Summary 

• History Matching 

– Multi-objective may increase convergence 
speed, but not always 

• Forecasting 

– Multi-objective provides greater coverage of 
pareto front; can lead to better forecasts 

• Optimisation 

– Explore the full range of trade-offs 

– Can include uncertainty 
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