Normative vs. Positive Models: Choice under Uncertainty

E. Maskin

Newton Institute, Cambridge May 13, 2015 • Modern theory of choice dates from von Neumann and Morgenstern (1944)

- Modern theory of choice dates from von Neumann and Morgenstern (1944)
- precursors date from 18th century (D. Bernoulli)

$$u: X \to \mathbb{R}$$

$$\uparrow$$
options

$$u: X \to \mathbb{R}$$

$$\uparrow$$
options

- choose option that maximizes

$$\sum_{x \in X} p_x u(x) \qquad p_x = \text{prob of } x$$

$$u: X \to \mathbb{R}$$

$$\uparrow$$
options

choose option that maximizes

$$\sum_{x \in X} p_x u(x) \qquad p_x = \text{prob of } x$$

• justification is *axiomatic*

$$u: X \to \mathbb{R}$$

$$\uparrow$$
options

- choose option that maximizes

$$\sum_{x \in X} p_x u(x) \qquad p_x = \text{prob of } x$$

- justification is *axiomatic*
 - rather than just *assuming* EU maximization, vN-M showed that if decision maker (DM) satisfies basic, rather compelling assumptions, must act *as though* maximizing EU

• One virtue of axiomatic approach:

- One virtue of axiomatic approach:
 - can understand complicated (and seemingly arbitrary) phenomenon (e.g., EU maximization) as *implication* of simple and less-arbitrary assumptions

• started as *normative*

- started as *normative*
 - how *should* rational DM behave under conditions of uncertainty

- started as *normative*
 - how *should* rational DM behave under conditions of uncertainty
- turned out to be *positive* too

- started as *normative*
 - how *should* rational DM behave under conditions of uncertainty
- turned out to be *positive* too

- explained much investment behavior

- started as *normative*
 - how *should* rational DM behave under conditions of uncertainty
- turned out to be *positive* too
 - explained much investment behavior
 - explained insurance markets well

- and even fairly rational people make mistakes

• but if mistakes are *random*

- and even fairly rational people make mistakes

• but if mistakes are *random*

- may wash out in *aggregate*

- but if mistakes are *random*
 - may wash out in *aggregate*
 - so rational model works well

- but if mistakes are *random*
 - may wash out in *aggregate*
 - so rational model works well
- Unfortunately, some anomalies discovered

- but if mistakes are *random*
 - may wash out in *aggregate*
 - so rational model works well
- Unfortunately, some *anomalies* discovered
 - situations where theory fails systematically

- but if mistakes are *random*
 - may wash out in *aggregate*
 - so rational model works well
- Unfortunately, some *anomalies* discovered
 - situations where theory fails systematically
 - will discuss paradoxes of Allais, Ellsberg, Kahneman-Tversky

• possible outcomes $X = \{x_1, \dots, x_n\}$

• possible outcomes $X = \{x_1, \dots, x_n\}$

- today, think of outcome as *monetary*

- possible outcomes $X = \{x_1, \dots, x_n\}$
 - today, think of outcome as *monetary*
 - finite number of possibilities

- possible outcomes $X = \{x_1, \dots, x_n\}$
 - today, think of outcome as *monetary*
 - finite number of possibilities
- lottery: *probability distribution* over outcomes

- possible outcomes $X = \{x_1, \dots, x_n\}$
 - today, think of outcome as monetary
 - finite number of possibilities
- lottery: *probability distribution* over outcomes

$$- \ell = \{p_1, ..., p_n\}, p_i = \text{prob of } x_i$$

- possible outcomes $X = \{x_1, \dots, x_n\}$
 - today, think of outcome as monetary
 - finite number of possibilities
- lottery: *probability distribution* over outcomes

$$-\ell = \{p_1, \dots, p_n\}, \ p_i = \text{prob of } x_i$$

• DM chooses among lotteries

• DM has preferences over lotteries

- DM has preferences over lotteries
 - $\ell \succeq \ell'$ DM (weakly) prefers ℓ to ℓ'

- DM has preferences over lotteries
 - $\ell \succeq \ell'$ DM (weakly) prefers ℓ to ℓ'
 - $\ell \succ \ell'$ DM strictly prefers ℓ to ℓ'

- DM has preferences over lotteries
 - $\ell \succeq \ell'$ DM (weakly) prefers ℓ to ℓ'
 - $\ell \succ \ell'$ DM strictly prefers ℓ to ℓ'
 - $\ell \sim \ell'$ DM indifferent between ℓ and ℓ'

- DM has preferences over lotteries
 - $\ell \succeq \ell'$ DM (weakly) prefers ℓ to ℓ'
 - $\ell \succ \ell'$ DM strictly prefers ℓ to ℓ'
 - $\ell \sim \ell'$ DM indifferent between ℓ and ℓ'
- vN-M imposed axioms on preferences
- DM has preferences over lotteries
 - $\ell \succeq \ell'$ DM (weakly) prefers ℓ to ℓ'
 - $\ell \succ \ell'$ DM strictly prefers ℓ to ℓ'
 - $\ell \sim \ell'$ DM indifferent between ℓ and ℓ'
- vN-M imposed axioms on preferences
- (1) \succeq satisfies

- DM has preferences over lotteries
 - $\ell \succeq \ell'$ DM (weakly) prefers ℓ to ℓ'
 - $\ell \succ \ell'$ DM strictly prefers ℓ to ℓ'
 - $\ell \sim \ell'$ DM indifferent between ℓ and ℓ'
- vN-M imposed axioms on preferences
- (1) \succeq satisfies
 - reflexivity: $\ell \succeq \ell$

- DM has preferences over lotteries
 - $\ell \succeq \ell'$ DM (weakly) prefers ℓ to ℓ'
 - $\ell \succ \ell'$ DM strictly prefers ℓ to ℓ'
 - $\ell \sim \ell'$ DM indifferent between ℓ and ℓ'
- vN-M imposed axioms on preferences
- (1) \succeq satisfies
 - reflexivity: $\ell \succeq \ell$
 - *completeness*: for any ℓ and ℓ' , either $\ell \succeq \ell'$ or $\ell' \succeq \ell$

- DM has preferences over lotteries
 - $\ell \succeq \ell'$ DM (weakly) prefers ℓ to ℓ'
 - $\ell \succ \ell'$ DM strictly prefers ℓ to ℓ'
 - $\ell \sim \ell'$ DM indifferent between ℓ and ℓ'
- vN-M imposed axioms on preferences
- (1) \succeq satisfies
 - reflexivity: $\ell \succeq \ell$
 - *completeness*: for any ℓ and ℓ' , either $\ell \succeq \ell'$ or $\ell' \succeq \ell$
 - *transitivity*: if $\ell \succeq \ell'$ and $\ell' \succeq \ell''$, then $\ell \succeq \ell''$

- DM has preferences over lotteries
 - $\ell \succeq \ell'$ DM (weakly) prefers ℓ to ℓ'
 - $\ell \succ \ell'$ DM strictly prefers ℓ to ℓ'
 - $\ell \sim \ell'$ DM indifferent between ℓ and ℓ'
- vN-M imposed axioms on preferences
- (1) \succeq satisfies
 - reflexivity: $\ell \succeq \ell$
 - *completeness*: for any ℓ and ℓ' , either $\ell \succeq \ell'$ or $\ell' \succeq \ell$
 - *transitivity*: if $\ell \succeq \ell'$ and $\ell' \succeq \ell''$, then $\ell \succeq \ell''$
 - from (1), can assume $x_1 \succ x_2 \succ ... \succ x_n$ (labeling)

(2) \succeq satisfies *continuity* :

- (2) \succeq satisfies *continuity* :
 - for any ℓ there exists probability p such that

- (2) \succeq satisfies *continuity* :
 - for any ℓ there exists probability p such that

- (2) \succeq satisfies *continuity* :
 - for any ℓ there exists probability p such that

if and only if $p \ge p'$

(4) \succeq satisfies *independence* :

- (4) \succeq satisfies *independence* :
 - most constroversial axiom

- (4) \succeq satisfies *independence* :
 - most constroversial axiom
 - suppose $\ell \succeq \ell'$

- (4) \succeq satisfies *independence* :
 - most constroversial axiom
 - suppose $\ell \succeq \ell'$
 - then for all p and $\hat{\ell}$

- (4) \succeq satisfies *independence* :
 - most constroversial axiom
 - suppose $\ell \succeq \ell'$
 - then for all p and $\hat{\ell}$

- only difference between two lotteries is: on right side, ℓ replaced by ℓ'

Proposition (vN-M): if \succeq satisfies axioms (1) - (4) then

-
$$\ell = \{p_1, ..., p_n\} \succeq \ell' = \{p'_1, ..., p'_n\}$$

-
$$\ell = \{p_1, ..., p_n\} \succeq \ell' = \{p'_1, ..., p'_n\}$$

if and only if

-
$$\ell = \{p_1, ..., p_n\} \succeq \ell' = \{p'_1, ..., p'_n\}$$

if and only if

$$\sum p_i u(x_i) \geq \sum p'_i u(x_i)$$

Proposition (vN-M): if \succeq satisfies axioms (1) - (4) then there exists $u: \{x_1, ..., x_n\} \rightarrow \mathbb{R}$ such that $- \ell = \{p_1, ..., p_n\} \succeq \ell' = \{p'_1, ..., p'_n\}$ if and only if $\sum p_i u(x_i) \ge \sum p'_i u(x_i)$

- so DM chooses lottery that maximizes EU

Proof:

• let $u(x_1) = 1$, $u(x_n) = 0$

Proof:

- let $u(x_1) = 1$, $u(x_n) = 0$
- from continuity, for every x_i , there exists probability $u(x_i)$ such that

 $\{p_1,\ldots,p_n\}$ \succeq $\{p'_1,\ldots,p'_n\}$

 $\{p_1,\ldots,p_n\}$ \succeq $\{p'_1,\ldots,p'_n\}$ \leftrightarrow x_1 x_1 u(x2) x_1 u(x2) $-x_1$ p_1 $\frac{1-u(x_2)}{x_n}$ p'_1 p_2 $1 - u(x_2)$ p'_2 \succeq \boldsymbol{p}_n

 x_n

: p'_n

 X_n

 x_n

independence

 $\{p_1,\ldots,p_n\}$ \succeq $\{p'_1,\ldots,p'_n\}$

independence

 \leftrightarrow

addition and multiplication

 $\{p_1,\ldots,p_n\} \qquad \succeq \qquad \{p'_1,\ldots,p'_n\}$

independence

addition and multiplication

 \leftrightarrow

 \leftrightarrow

 $\sum p_i u(x_i) \ge \sum p'_i u(x_i)$ monotonicity

• DM is risk averse if

- DM is risk averse if
 - prefers $px_i + (1 p)x_j$

to lottery with probability p of x_i probability 1 - p of x_j

- DM is risk averse if
 - prefers $px_i + (1 p)x_j$

to lottery with probability p of x_i probability 1 - p of x_j

- i.e., prefers "sure thing" to lottery

- DM is risk averse if
 - prefers $px_i + (1 p)x_j$

to

lottery with

probability p of x_i probability 1 - p of x_j

- i.e., prefers "sure thing" to lottery
- risk aversion explains *insurance market*

- DM is risk averse if
 - prefers $px_i + (1 p)x_j$

to lottery with probability p of x_i probability 1 - p of x_j

- i.e., prefers "sure thing" to lottery
- risk aversion explains insurance market
 - small probability of big loss

- DM is risk averse if
 - prefers $px_i + (1 p)x_j$

to

lottery with

probability p of x_i probability 1 - p of x_j

- i.e., prefers "sure thing" to lottery
- risk aversion explains insurance market
 - small probability of big loss
 - e.g., there's a small chance your house may burn down

- DM is risk averse if
 - prefers $px_i + (1 p)x_j$

to lottery with

> probability p of x_i probability 1 - p of x_j

- i.e., prefers "sure thing" to lottery
- risk aversion explains insurance market
 - small probability of big loss
 - e.g., there's a small chance your house may burn down
 - you are willing to pay substantial amount (insurance premium) to replace lottery with its expected value

- DM is risk averse if
 - prefers $px_i + (1 p)x_j$

to lottery with probability p of x_i

probability 1 - p of x_j

- i.e., prefers "sure thing" to lottery
- risk aversion explains insurance market
 - small probability of big loss
 - e.g., there's a small chance your house may burn down
 - you are willing to pay substantial amount (insurance premium) to replace lottery with its expected value
- risk aversion \leftrightarrow utility function *u concave*

• If monetary outcomes are unboundedly large

- If monetary outcomes are unboundedly large
 - then *u* must be concave eventually
- If monetary outcomes are unboundedly large
 - then *u* must be concave eventually
- to see this, consider the following lottery :

- If monetary outcomes are unboundedly large
 - then *u* must be concave eventually
- to see this, consider the following lottery :
 - probability 1/2 of £1

- If monetary outcomes are unboundedly large
 - then *u* must be concave eventually
- to see this, consider the following lottery :
 - probability 1/2 of £1
 - probability 1/4 of $\pounds 2$

- If monetary outcomes are unboundedly large
 - then *u* must be concave eventually
- to see this, consider the following lottery :
 - probability 1/2 of £1
 - probability 1/4 of $\pounds 2$
 - probability 1/8 of £4

- If monetary outcomes are unboundedly large
 - then *u* must be concave eventually
- to see this, consider the following lottery :
 - probability 1/2 of £1
 - probability 1/4 of £2
 - probability 1/8 of £4
 - probability $1/2^{n+1}$ of $\pounds 2^n$

- If monetary outcomes are unboundedly large
 - then *u* must be concave eventually
- to see this, consider the following lottery :
 - probability 1/2 of £1
 - probability 1/4 of $\pounds 2$
 - probability 1/8 of £4
 - probability $1/2^{n+1}$ of $\pounds 2^n$
- How much would DM be willing to pay for lottery?

- If monetary outcomes are unboundedly large
 - then *u* must be concave eventually
- to see this, consider the following lottery :
 - probability 1/2 of £1
 - probability 1/4 of $\pounds 2$
 - probability 1/8 of £4
 - probability $1/2^{n+1}$ of $\pounds 2^n$
- How much would DM be willing to pay for lottery?
 - expected value:

$$\frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 4 + \dots = \infty!$$

- If monetary outcomes are unboundedly large
 - then *u* must be concave eventually
- to see this, consider the following lottery :
 - probability 1/2 of £1
 - probability 1/4 of $\pounds 2$
 - probability 1/8 of £4
 - probability $1/2^{n+1}$ of $\pounds 2^n$
- How much would DM be willing to pay for lottery?
 - expected value:

$$\frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 4 + \dots = \infty$$

- but no one would be willing to pay ∞

- If monetary outcomes are unboundedly large
 - then *u* must be concave eventually
- to see this, consider the following lottery:
 - probability 1/2 of £1
 - probability 1/4 of $\pounds 2$
 - probability 1/8 of £4
 - probability $1/2^{n+1}$ of $\pounds 2^n$
- How much would DM be willing to pay for lottery?
 - expected value:

$$\frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 4 + \dots = \infty!$$

- but no one would be willing to pay ∞
- so DM's utility function must be concave eventually

• Example called St. Petersburg Paradox

- Example called St. Petersburg Paradox
- resolved by Bernoulli (1738)

• vN-M model applies very widely

- vN-M model applies very widely
- but some well-documented violations

- vN-M model applies very widely
- but some well-documented violations
- one pointed out by Allais (1953)

- £1 million for sure (A)

 $- \pounds 1 \text{ million for sure} \tag{A}$

and

- £1 million for sure (A) and

- lottery

- £1 million for sure (A) and

– lottery

• most people choose A

and

and

• most people choose D

- most people choose D
- but choices A and D together violate EU!

• B can be rewritten 10^{11} £5m

.89

• B can be rewritten 10^{11} £5m

• but if $A \succ B$, then independence axiom implies

1/11

-0

.89

• B can be rewritten 10^{11} £5m

£1m

• but if $A \succ B$, then independence axiom implies

1/11

-0

• so $C \succ D$

• So far, have been taking probabilities as "objective"

- So far, have been taking probabilities as "objective"
 - but, in reality, usually are not (except in casinos, etc.)

- So far, have been taking probabilities as "objective"
 - but, in reality, usually are not (except in casinos, etc.)
- if buy a share of IBM

- So far, have been taking probabilities as "objective"
 - but, in reality, usually are not (except in casinos, etc.)
- if buy a share of IBM
 - could go up by \$10

- So far, have been taking probabilities as "objective"
 - but, in reality, usually are not (except in casinos, etc.)
- if buy a share of IBM
 - could go up by \$10
 - could go down by \$7

- So far, have been taking probabilities as "objective"
 - but, in reality, usually are not (except in casinos, etc.)
- if buy a share of IBM
 - could go up by \$10
 - could go down by 7
 - could stay the same

- So far, have been taking probabilities as "objective"
 - but, in reality, usually are not (except in casinos, etc.)
- if buy a share of IBM
 - could go up by \$10
 - could go down by \$7
 - could stay the same
 - probabilities of these *events* not "prescribed"-- they are subjective

- So far, have been taking probabilities as "objective"
 - but, in reality, usually are not (except in casinos, etc.)
- if buy a share of IBM
 - could go up by \$10
 - could go down by \$7
 - could stay the same
 - probabilities of these *events* not "prescribed"-- they are subjective
- Savage (1954) reformulates vN-M axioms so that apply to case of *subjective* probability
• Independence axiom becomes:

- Independence axiom becomes:
 - if $\ell \succeq \ell'$

- Independence axiom becomes:
 - if $\ell \succeq \ell'$
 - then for all events *E* and all $\hat{\ell}$

• then there exists a probability distribution $p(\bullet)$ and utility function $u: X \to \mathbb{R}$ such that

- then there exists a probability distribution $p(\bullet)$ and utility function $u: X \to \mathbb{R}$ such that
 - p(E) = DM's probability of *E*, for all *E*

- then there exists a probability distribution $p(\bullet)$ and utility function $u: X \to \mathbb{R}$ such that
 - p(E) = DM's probability of *E*, for all *E*

-
$$\ell \succeq \ell' \leftrightarrow$$

- then there exists a probability distribution $p(\bullet)$ and utility function $u: X \to \mathbb{R}$ such that
 - p(E) = DM's probability of *E*, for all *E*

$$- \ell \succeq \ell' \leftrightarrow \sum_{E} p(E)u(x_{\ell E}) \ge \sum_{E} p(E)u(x_{\ell' E}),$$

- then there exists a probability distribution $p(\bullet)$ and utility function $u: X \to \mathbb{R}$ such that
 - p(E) = DM's probability of *E*, for all *E*

$$- \ell \succeq \ell' \leftrightarrow \sum_{E} p(E)u(x_{\ell E}) \ge \sum_{E} p(E)u(x_{\ell' E}),$$

- where $x_{\ell E}$ = outcome of lottery ℓ in state E $x_{\ell' E}$ = outcome of lottery ℓ' in state E • Famous violation of Savage's axioms due to D. Ellsberg

- Famous violation of Savage's axioms due to D. Ellsberg
- same Ellsberg who leaked "Pentagon Paper" to press

	30	60	
	red	black	yellow
ℓ_1	£100	0	0
ℓ_2	0	£100	0
ℓ_3	£100	0	£100
ℓ_4	0	£100	£100

	30	60	
	red	black	yellow
ℓ_1	£100	0	0
ℓ_2	0	£100	0
ℓ_3	£100	0	£100
ℓ_4	0	£100	£100

• most people prefer ℓ_1 to ℓ_2

	30	6	60	
	red	black	yellow	
ℓ_1	£100	0	0	
ℓ_2	0	£100	0	
ℓ_3	£100	0	£100	
ℓ_4	0	£100	£100	

- most people prefer ℓ_1 to ℓ_2
- most people prefer ℓ_4 to ℓ_3

	30	60	
	red	black	yellow
ℓ_1	£100	0	0
ℓ_2	0	£100	0
ℓ_3	£100	0	£100
ℓ_4	0	£100	£100

- most people prefer ℓ_1 to ℓ_2
- most people prefer ℓ_4 to ℓ_3
- violates Savage

	30	60	
	red	black	yellow
ℓ_1	£100	0	0
ℓ_2	0	£100	0
ℓ_3	£100	0	£100
ℓ_4	0	£100	£100

- most people prefer ℓ_1 to ℓ_2
- most people prefer ℓ_4 to ℓ_3
- violates Savage

-
$$\ell_1 \succ \ell_2 \rightarrow p(\text{red}) > p(\text{black})$$

	30	60	
	red	black	yellow
ℓ_1	£100	0	0
ℓ_2	0	£100	0
ℓ_3	£100	0	£100
ℓ_4	0	£100	£100

- most people prefer ℓ_1 to ℓ_2
- most people prefer ℓ_4 to ℓ_3
- violates Savage

-
$$\ell_1 \succ \ell_2 \rightarrow p(\text{red}) > p(\text{black})$$

- $\ell_4 \succ \ell_3 \rightarrow p(\text{black}) + p(\text{yellow}) > p(\text{red}) + p(\text{yellow})$

Kahneman-Tversky (1981)

Kahneman-Tversky (1981)

• casts doubt on whether can represent lottery unambiguously as $\ell = (p_1, ..., p_n)$

• treatment A: saves 200 lives

13

2/3

- treatment A: saves 200 lives
- treatment B:

> 600 saved

nobody saved

- treatment A: saves 200 lives
- treatment B: $\sqrt{3}$

600 saved

nobody saved

- most people choose A over B

2/3

- treatment A: saves 200 lives
- treatment B: $\sqrt{3}$

600 saved

nobody saved

- most people choose A over B

2/3

• treatment C: 400 die

- treatment A: saves 200 lives
- treatment B:

nobody saved

600 saved

- most people choose A over B

2/3

- treatment C: 400 die
- treatment D:

- treatment A: saves 200 lives
- treatment B:

nobody saved

600 saved

- most people choose A over B

2/3

- treatment C: 400 die
- treatment D:

N3 N3 600 die

- most people choose D over C

- treatment A: saves 200 lives
- treatment B:

nobody saved

600 saved

- most people choose A over B

2/3

- treatment C: 400 die
- treatment D:

NB nobody dies

- most people choose D over C
- but A equivalent to C, B equivalent to D!

• Have shown you 3 "anomalies"

- Have shown you 3 "anomalies"
 - Allais

- Have shown you 3 "anomalies"
 - Allais
 - Ellsberg

- Have shown you 3 "anomalies"
 - Allais
 - Ellsberg
 - Kahneman-Tversky

- Have shown you 3 "anomalies"
 - Allais
 - Ellsberg
 - Kahneman-Tversky
- there are about 8 or 9 more

- Have shown you 3 "anomalies"
 - Allais
 - Ellsberg
 - Kahneman-Tversky
- there are about 8 or 9 more
 - theoretical problem

- Have shown you 3 "anomalies"
 - Allais
 - Ellsberg
 - Kahneman-Tversky
- there are about 8 or 9 more
 - theoretical problem
 - there is a model that accounts for each of the dozen problems

- Have shown you 3 "anomalies"
 - Allais
 - Ellsberg
 - Kahneman-Tversky
- there are about 8 or 9 more
 - theoretical problem
 - there is a model that accounts for each of the dozen problems
 - but that means there are 12 models

- Have shown you 3 "anomalies"
 - Allais
 - Ellsberg
 - Kahneman-Tversky
- there are about 8 or 9 more
 - theoretical problem
 - there is a model that accounts for each of the dozen problems
 - but that means there are 12 models
- by contrast in early days of decision theory, just one model
- Have shown you 3 "anomalies"
 - Allais
 - Ellsberg
 - Kahneman-Tversky
- there are about 8 or 9 more
 - theoretical problem
 - there is a model that accounts for each of the dozen problems
 - but that means there are 12 models
- by contrast in early days of decision theory, just one model
 - challenge: to unify the 12