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• In von Neumann-Morgenstern model, choices made according 
to expected utility (EU) maximization 
 
 
 
– choose option that maximizes  

 
• justification is axiomatic 

– rather than just assuming EU maximization, vN-M showed that if 
decision maker (DM) satisfies basic, rather compelling assumptions, 
must act as though maximizing EU 
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• One virtue of axiomatic approach: 
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• One virtue of axiomatic approach: 
– can understand complicated (and seemingly 

arbitrary) phenomenon (e.g., EU maximization) as 
implication of simple and less-arbitrary 
assumptions 
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vN-M model both normative and positive 
• started as normative 

– how should rational DM behave under conditions 
of uncertainty 

• turned out to be positive too 
– explained much investment behavior 
– explained insurance markets well 
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• Of course, not all people are rational  (nobody 
fully rational) 
– and even fairly rational people make mistakes 

• but if mistakes are random 
– may wash out in aggregate 
– so rational model works well 

• Unfortunately, some anomalies discovered 
– situations where theory fails systematically 
– will discuss paradoxes of Allais, Ellsberg, 

Kahneman-Tversky 
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vN-M model 
•   

– today, think of outcome as monetary 
– finite number of possibilities 

• lottery: probability distribution over outcomes 
 

• DM chooses among lotteries 
{ }1 = , , ,   prob of n i ip p p x− = 

{ }1possible outcomes , , nX x x= …
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-  then   be concave eventuallyu must
   to see this,  consider the following lottery :

-  probability 1  / 2  of  £1
-  probability 1 / 4  of  £2

-  probability 1  / 8  of  £4
1  -  probability 1 / 2 of £2  

n n+

-  expected value:
1 1 1      1 2 4
2 4 8
⋅ + ⋅ + ⋅ +

   How much would DM be willing to pay for lottery?

-  so DM’s utility function must be concave eventually
-  but no one would be willing to pay ∞

!= ∞
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• vN-M model applies very widely 
• but some well-documented violations 
• one pointed out by Allais (1953) 
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• most people choose D 
• but choices A and D together violate EU! 
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• So far, have been taking probabilities as “objective” 
– but, in reality, usually are not (except in casinos, etc.) 

• if buy a share of IBM 
– could go up by $10 
– could go down by $7 
– could stay the same 
– probabilities of these events not “prescribed”-- they are subjective 

• Savage (1954) reformulates vN-M axioms so that apply to 
case of subjective probability  
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′




̂

̂

     



-   if  ′
  



ˆ-   then for all events  and all E 

E
E

E−
E−
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Proposition (Savage): if satisfies Savage’s axioms



   then there exists a probability distribution ( )p 

and utility function :  such thatu X → 

-    ( ) DM’s probability of , for all p E E E=
-   ′↔  



( ) ( ) ( ) ( ), E E
E E

p E u x p E u x ′≥∑ ∑
 

-    where outcome of lottery  in state Ex E=




 outcome of lottery  in state Ex E′ ′=






• Famous violation of Savage’s axioms due to D. 
Ellsberg 
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• Famous violation of Savage’s axioms due to D. 
Ellsberg 

• same Ellsberg who leaked “Pentagon Paper” to press 
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Closed box containing 90 colored balls 
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1 2   most people prefer  to   

4 3   most people prefer  to   

   violates Savage

1 2-    (red) (black)p p→ >  

4 3-    (black) (yellow) (red) (yellow)p p p p→ + > +  
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Kahneman-Tversky (1981) 
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Kahneman-Tversky (1981) 
• casts doubt on whether can represent lottery 
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1unambiguously as ( , , )np p= 
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600 citizens exposed to deadly disease

600 saved

   treatment C: 400 die

   treatment D:

-   most people choose D over C
   but A equivalent to C, B equivalent to D!

-   most people choose A over B

   treatment B:

   treatment A: saves 200 lives

nobody saved

nobody dies

600 die
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• Have shown you 3 “anomalies” 
– Allais 
– Ellsberg 
– Kahneman-Tversky 

• there are about 8 or 9 more 
– theoretical problem 
– there is a model that accounts for each of the dozen problems 
– but that means there are 12 models 

•  by contrast in early days of decision theory, just one model 
– challenge: to unify the 12 
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