Normative vs. Positive Models: Choice under Uncertainty

E. Maskin

Newton Institute, Cambridge

 May 13, 2015- Modern theory of choice dates from von Neumann and Morgenstern (1944)
- Modern theory of choice dates from von Neumann and Morgenstern (1944)
- precursors date from $18^{\text {th }}$ century (D. Bernoulli)
- In von Neumann-Morgenstern model, choices made according to expected utility ($E U$) maximization
- In von Neumann-Morgenstern model, choices made according to expected utility ($E U$) maximization

- In von Neumann-Morgenstern model, choices made according to expected utility ($E U$) maximization

options
- choose option that maximizes $\sum_{x \in X} p_{\chi} u(x) \quad p_{x}=$ prob of x
- In von Neumann-Morgenstern model, choices made according to expected utility ($E U$) maximization

options
- choose option that maximizes $\sum_{x \in X} p_{x} u(x) \quad p_{x}=$ prob of x
- justification is axiomatic
- In von Neumann-Morgenstern model, choices made according to expected utility ($E U$) maximization

- choose option that maximizes $\sum_{x \in X} p_{x} u(x) \quad p_{x}=$ prob of x
- justification is axiomatic
- rather than just assuming EU maximization, vN-M showed that if decision maker (DM) satisfies basic, rather compelling assumptions, must act as though maximizing EU
- One virtue of axiomatic approach:
- One virtue of axiomatic approach:
- can understand complicated (and seemingly arbitrary) phenomenon (e.g., EU maximization) as implication of simple and less-arbitrary assumptions

vN-M model both normative and positive

vN-M model both normative and positive

- started as normative

vN-M model both normative and positive

- started as normative
- how should rational DM behave under conditions of uncertainty

vN-M model both normative and positive

- started as normative
- how should rational DM behave under conditions of uncertainty
- turned out to be positive too

vN-M model both normative and positive

- started as normative
- how should rational DM behave under conditions of uncertainty
- turned out to be positive too
- explained much investment behavior

vN-M model both normative and positive

- started as normative
- how should rational DM behave under conditions of uncertainty
- turned out to be positive too
- explained much investment behavior
- explained insurance markets well
- Of course, not all people are rational (nobody fully rational)
- Of course, not all people are rational (nobody fully rational)
- and even fairly rational people make mistakes
- Of course, not all people are rational (nobody fully rational)
- and even fairly rational people make mistakes
- but if mistakes are random
- Of course, not all people are rational (nobody fully rational)
- and even fairly rational people make mistakes
- but if mistakes are random
- may wash out in aggregate
- Of course, not all people are rational (nobody fully rational)
- and even fairly rational people make mistakes
- but if mistakes are random
- may wash out in aggregate
- so rational model works well
- Of course, not all people are rational (nobody fully rational)
- and even fairly rational people make mistakes
- but if mistakes are random
- may wash out in aggregate
- so rational model works well
- Unfortunately, some anomalies discovered
- Of course, not all people are rational (nobody fully rational)
- and even fairly rational people make mistakes
- but if mistakes are random
- may wash out in aggregate
- so rational model works well
- Unfortunately, some anomalies discovered
- situations where theory fails systematically
- Of course, not all people are rational (nobody fully rational)
- and even fairly rational people make mistakes
- but if mistakes are random
- may wash out in aggregate
- so rational model works well
- Unfortunately, some anomalies discovered
- situations where theory fails systematically
- will discuss paradoxes of Allais, Ellsberg,

Kahneman-Tversky
$v N-M$ model
$v N-M$ model

- possible outcomes $X=\left\{x_{1}, \ldots, x_{n}\right\}$
$v N-M$ model
- possible outcomes $X=\left\{x_{1}, \ldots, x_{n}\right\}$
- today, think of outcome as monetary
$v N-M$ model
- possible outcomes $X=\left\{x_{1}, \ldots, x_{n}\right\}$
- today, think of outcome as monetary
- finite number of possibilities
$v N-M$ model
- possible outcomes $X=\left\{x_{1}, \ldots, x_{n}\right\}$
- today, think of outcome as monetary
- finite number of possibilities
- lottery: probability distribution over outcomes
$v N-M$ model
- possible outcomes $X=\left\{x_{1}, \ldots, x_{n}\right\}$
- today, think of outcome as monetary
- finite number of possibilities
- lottery: probability distribution over outcomes
$-\ell=\left\{p_{1}, \ldots, p_{n}\right\}, \quad p_{i}=$ prob of x_{i}
$v N-M$ model
- possible outcomes $X=\left\{x_{1}, \ldots, x_{n}\right\}$
- today, think of outcome as monetary
- finite number of possibilities
- lottery: probability distribution over outcomes

$$
-\ell=\left\{p_{1}, \ldots, p_{n}\right\}, \quad p_{i}=\text { prob of } x_{i}
$$

- DM chooses among lotteries
- DM has preferences over lotteries
- DM has preferences over lotteries
$\ell \succsim \ell^{\prime} \quad \mathrm{DM}$ (weakly) prefers ℓ to ℓ^{\prime}
- DM has preferences over lotteries
$\ell \succsim \ell^{\prime}$ DM (weakly) prefers ℓ to ℓ^{\prime}
$\ell \succ \ell^{\prime} \quad$ DM strictly prefers ℓ to ℓ^{\prime}
- DM has preferences over lotteries
$\ell \succsim \ell^{\prime}$ DM (weakly) prefers ℓ to ℓ^{\prime}
$\ell \succ \ell^{\prime}$
DM strictly prefers ℓ to ℓ^{\prime}
$\ell \sim \ell^{\prime} \quad$ DM indifferent between ℓ and ℓ^{\prime}
- DM has preferences over lotteries
$\ell \succsim \ell^{\prime} \quad \mathrm{DM}$ (weakly) prefers ℓ to ℓ^{\prime}
$\ell \succ \ell^{\prime} \quad$ DM strictly prefers ℓ to ℓ^{\prime}
$\ell \sim \ell^{\prime} \quad$ DM indifferent between ℓ and ℓ^{\prime}
- vN-M imposed axioms on preferences
- DM has preferences over lotteries
$\ell \succsim \ell^{\prime} \quad \mathrm{DM}$ (weakly) prefers ℓ to ℓ^{\prime}
$\ell \succ \ell^{\prime} \quad$ DM strictly prefers ℓ to ℓ^{\prime}
$\ell \sim \ell^{\prime} \quad$ DM indifferent between ℓ and ℓ^{\prime}
- vN-M imposed axioms on preferences
(1) \succsim satisfies
- DM has preferences over lotteries
$\ell \succsim \ell^{\prime} \quad \mathrm{DM}$ (weakly) prefers ℓ to ℓ^{\prime}
$\ell \succ \ell^{\prime} \quad$ DM strictly prefers ℓ to ℓ^{\prime}
$\ell \sim \ell^{\prime} \quad$ DM indifferent between ℓ and ℓ^{\prime}
- vN-M imposed axioms on preferences
(1) \succsim satisfies
- reflexivity: $\ell \succsim \ell$
- DM has preferences over lotteries
$\ell \succsim \ell^{\prime}$ DM (weakly) prefers ℓ to ℓ^{\prime}
$\ell \succ \ell^{\prime}$
DM strictly prefers ℓ to ℓ^{\prime}
$\ell \sim \ell^{\prime} \quad$ DM indifferent between ℓ and ℓ^{\prime}
- vN-M imposed axioms on preferences
(1) \succsim satisfies
- reflexivity: $\ell \succsim \ell$
- completeness: for any ℓ and ℓ^{\prime}, either $\ell \succsim \ell^{\prime}$ or $\ell^{\prime} \succsim \ell$
- DM has preferences over lotteries
$\ell \succsim \ell^{\prime}$ DM (weakly) prefers ℓ to ℓ^{\prime}
$\ell \succ \ell^{\prime}$
DM strictly prefers ℓ to ℓ^{\prime}
$\ell \sim \ell^{\prime} \quad$ DM indifferent between ℓ and ℓ^{\prime}
- vN-M imposed axioms on preferences
(1) \succsim satisfies
- reflexivity: $\ell \succsim \ell$
- completeness: for any ℓ and ℓ^{\prime}, either $\ell \succsim \ell^{\prime}$ or $\ell^{\prime} \succsim \ell$
- transitivity: if $\ell \succsim \ell^{\prime}$ and $\ell^{\prime} \succsim \ell^{\prime \prime}$, then $\ell \succsim \ell^{\prime \prime}$
- DM has preferences over lotteries
$\ell \succsim \ell^{\prime}$ DM (weakly) prefers ℓ to ℓ^{\prime}
$\ell \succ \ell^{\prime}$
DM strictly prefers ℓ to ℓ^{\prime}
$\ell \sim \ell^{\prime} \quad$ DM indifferent between ℓ and ℓ^{\prime}
- vN-M imposed axioms on preferences
(1) \succsim satisfies
- reflexivity: $\ell \succsim \ell$
- completeness: for any ℓ and ℓ^{\prime}, either $\ell \succsim \ell^{\prime}$ or $\ell^{\prime} \succsim \ell$
- transitivity: if $\ell \succsim \ell^{\prime}$ and $\ell^{\prime} \succsim \ell^{\prime \prime}$, then $\ell \succsim \ell^{\prime \prime}$
- from (1), can assume $x_{1} \succ x_{2} \succ \ldots \succ x_{n}$ (labeling)
(2) \succsim satisfies continuity:
(2) \succsim satisfies continuity:
- for any ℓ there exists probability p such that

(2) \succsim satisfies continuity:
- for any ℓ there exists probability p such that

(3) \succsim satisfies monotonicity:

(2) \succsim satisfies continuity:
- for any ℓ there exists probability p such that

(3) \succsim satisfies monotonicity:

if and only if $p \geq p^{\prime}$
(4) \succsim satisfies independence:
(4) \succsim satisfies independence :
- most constroversial axiom
(4) \succsim satisfies independence :
- most constroversial axiom
- suppose $\ell \succsim \ell^{\prime}$
(4) \succsim satisfies independence:
- most constroversial axiom
- suppose $\ell \succsim \ell^{\prime}$
- then for all p and $\hat{\ell}$

(4) \succsim satisfies independence :
- most constroversial axiom
- suppose $\ell \succsim \ell^{\prime}$
- then for all p and $\hat{\ell}$

- only difference between two lotteries is: on right side, ℓ replaced by ℓ^{\prime}

Proposition (vN-M): if \succsim satisfies axioms (1) - (4) then

Proposition (vN-M): if \succsim satisfies axioms (1) - (4) then

 there exists $u:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow \mathbb{R}$ such that
Proposition (vN-M): if \succsim satisfies axioms (1) - (4) then

 there exists $u:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow \mathbb{R}$ such that$$
-\ell=\left\{p_{1}, \ldots, p_{n}\right\} \succsim \ell^{\prime}=\left\{p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right\}
$$

Proposition (vN-M): if \succsim satisfies axioms (1) - (4) then

 there exists $u:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow \mathbb{R}$ such that$$
\begin{gathered}
-\ell=\left\{p_{1}, \ldots, p_{n}\right\} \succsim \ell^{\prime}=\left\{p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right\} \\
\text { if and only if }
\end{gathered}
$$

Proposition (vN-M): if \succsim satisfies axioms (1) - (4) then

 there exists $u:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow \mathbb{R}$ such that$$
-\ell=\left\{p_{1}, \ldots, p_{n}\right\} \succsim \ell^{\prime}=\left\{p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right\}
$$

if and only if

$$
\sum p_{i} u\left(x_{i}\right) \geq \sum p_{i}^{\prime} u\left(x_{i}\right)
$$

Proposition (vN-M): if \succsim satisfies axioms (1) - (4) then

 there exists $u:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow \mathbb{R}$ such that- $\ell=\left\{p_{1}, \ldots, p_{n}\right\} \succsim \ell^{\prime}=\left\{p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right\}$
if and only if

$$
\sum p_{i} u\left(x_{i}\right) \geq \sum p_{i}^{\prime} u\left(x_{i}\right)
$$

- so DM chooses lottery that maximizes EU

Proof:

- let $u\left(x_{1}\right)=1, u\left(x_{n}\right)=0$

Proof:

- let $u\left(x_{1}\right)=1, u\left(x_{n}\right)=0$
- from continuity, for every x_{i}, there exists probability $u\left(x_{i}\right)$ such that

$$
\left\{p_{1}, \ldots, p_{n}\right\} \quad \succsim \quad\left\{p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right\}
$$

$$
\left\{p_{1}, \ldots, p_{n}\right\} \quad \succsim \quad\left\{p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right\}
$$

independence

$$
\left\{p_{1}, \ldots, p_{n}\right\} \quad \succsim \quad\left\{p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right\}
$$

independence

\leftrightarrow

addition and multiplication

$$
\left\{p_{1}, \ldots, p_{n}\right\} \quad \succsim \quad\left\{p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right\}
$$

\leftrightarrow

independence
\leftrightarrow

addition and multiplication
\leftrightarrow
$\sum p_{i} u\left(x_{i}\right) \quad \geq \quad \sum p_{i}^{\prime} u\left(x_{i}\right) \quad$ monotonicity

- DM is risk averse if
- DM is risk averse if
- prefers $p x_{i}+(1-p) x_{j}$
to
lottery with
probability p of x_{i} probability 1- p of x_{j}
- DM is risk averse if
- prefers $p x_{i}+(1-p) x_{j}$
to
lottery with
probability p of x_{i}
probability 1- p of x_{j}
- i.e., prefers "sure thing" to lottery
- DM is risk averse if
- prefers $p x_{i}+(1-p) x_{j}$
to
lottery with
probability p of x_{i}
probability 1- p of x_{j}
- i.e., prefers "sure thing" to lottery
- risk aversion explains insurance market
- DM is risk averse if
- prefers $p x_{i}+(1-p) x_{j}$
to
lottery with
probability p of x_{i} probability 1- p of x_{j}
- i.e., prefers "sure thing" to lottery
- risk aversion explains insurance market
- small probability of big loss
- DM is risk averse if
- prefers $p x_{i}+(1-p) x_{j}$
to
lottery with
probability p of x_{i} probability 1- p of x_{j}
- i.e., prefers "sure thing" to lottery
- risk aversion explains insurance market
- small probability of big loss
- e.g., there's a small chance your house may burn down
- DM is risk averse if
- prefers $p x_{i}+(1-p) x_{j}$
to
lottery with
probability p of x_{i}
probability 1- p of x_{j}
- i.e., prefers "sure thing" to lottery
- risk aversion explains insurance market
- small probability of big loss
- e.g., there's a small chance your house may burn down
- you are willing to pay substantial amount (insurance premium) to replace lottery with its expected value
- DM is risk averse if
- prefers $p x_{i}+(1-p) x_{j}$
to
lottery with
probability p of x_{i}
probability 1- p of x_{j}
- i.e., prefers "sure thing" to lottery
- risk aversion explains insurance market
- small probability of big loss
- e.g., there's a small chance your house may burn down
- you are willing to pay substantial amount (insurance premium) to replace lottery with its expected value
- risk aversion \leftrightarrow utility function u concave
- If monetary outcomes are unboundedly large
- If monetary outcomes are unboundedly large - then u must be concave eventually
- If monetary outcomes are unboundedly large - then u must be concave eventually
- to see this, consider the following lottery:
- If monetary outcomes are unboundedly large - then u must be concave eventually
- to see this, consider the following lottery:
- probability 1 / 2 of $£ 1$
- If monetary outcomes are unboundedly large - then u must be concave eventually
- to see this, consider the following lottery:
- probability $1 / 2$ of $£ 1$
- probability $1 / 4$ of $£ 2$
- If monetary outcomes are unboundedly large - then u must be concave eventually
- to see this, consider the following lottery:
- probability $1 / 2$ of $£ 1$
- probability $1 / 4$ of $£ 2$
- probability 1 / 8 of $£ 4$
- If monetary outcomes are unboundedly large - then u must be concave eventually
- to see this, consider the following lottery:
- probability $1 / 2$ of $£ 1$
- probability $1 / 4$ of $£ 2$
- probability 1 / 8 of $£ 4$
- probability $1 / 2^{n+1}$ of $£ 2^{n}$
- If monetary outcomes are unboundedly large - then u must be concave eventually
- to see this, consider the following lottery :
- probability $1 / 2$ of $£ 1$
- probability $1 / 4$ of $£ 2$
- probability 1 / 8 of $£ 4$
- probability $1 / 2^{n+1}$ of $£ 2^{n}$
- How much would DM be willing to pay for lottery?
- If monetary outcomes are unboundedly large
- then u must be concave eventually
- to see this, consider the following lottery :
- probability $1 / 2$ of $£ 1$
- probability $1 / 4$ of $£ 2$
- probability 1 / 8 of $£ 4$
- probability $1 / 2^{n+1}$ of $£ 2^{n}$
- How much would DM be willing to pay for lottery?
- expected value:

$$
\begin{array}{r}
\frac{1}{2} \cdot 1+\frac{1}{4} \cdot 2+\frac{1}{8} \cdot 4+\ldots \\
=\infty!
\end{array}
$$

- If monetary outcomes are unboundedly large
- then u must be concave eventually
- to see this, consider the following lottery :
- probability 1 / 2 of $£ 1$
- probability $1 / 4$ of $£ 2$
- probability 1 / 8 of $£ 4$
- probability $1 / 2^{n+1}$ of $£ 2^{n}$
- How much would DM be willing to pay for lottery?
- expected value:

$$
\begin{array}{r}
\frac{1}{2} \cdot 1+\frac{1}{4} \cdot 2+\frac{1}{8} \cdot 4+\ldots \\
=\infty!
\end{array}
$$

- but no one would be willing to pay ∞
- If monetary outcomes are unboundedly large
- then u must be concave eventually
- to see this, consider the following lottery:
- probability 1 / 2 of $£ 1$
- probability 1 / 4 of $£ 2$
- probability 1 / 8 of $£ 4$
- probability $1 / 2^{n+1}$ of $£ 2^{n}$
- How much would DM be willing to pay for lottery?
- expected value:

$$
\begin{array}{r}
\frac{1}{2} \cdot 1+\frac{1}{4} \cdot 2+\frac{1}{8} \cdot 4+\ldots \\
=\infty!
\end{array}
$$

- but no one would be willing to pay ∞
- so DM's utility function must be concave eventually
- Example called St. Petersburg Paradox
- Example called St. Petersburg Paradox
- resolved by Bernoulli (1738)
- vN-M model applies very widely
- vN-M model applies very widely
- but some well-documented violations
- vN-M model applies very widely
- but some well-documented violations
- one pointed out by Allais (1953)
- Suppose DM offered choice between
- Suppose DM offered choice between
- $£ 1$ million for sure
(A)
- Suppose DM offered choice between
- $£ 1$ million for sure
(A) and
- Suppose DM offered choice between
- $£ 1$ million for sure
(A)
and
- lottery

(B)
- Suppose DM offered choice between
- $£ 1$ million for sure
and
- lottery

(B)
- most people choose A
- Now, suppose DM offered choice between

(C)
- Now, suppose DM offered choice between

(C)
and
- Now, suppose DM offered choice between

(C)
and

(D)
- Now, suppose DM offered choice between

(C)
and

(D)
- most people choose D
- Now, suppose DM offered choice between

(C)
and

(D)
- most people choose D
- but choices A and D together violate EU!
- A can be rewritten as

- A can be rewritten as

- B can be rewritten

- A can be rewritten as

- B can be rewritten

- but if $\mathrm{A} \succ \mathrm{B}$, then independence axiom implies

- A can be rewritten as

- B can be rewritten

- but if $\mathrm{A} \succ \mathrm{B}$, then independence axiom implies

- so $\mathrm{C} \succ \mathrm{D}$
- So far, have been taking probabilities as "objective"
- So far, have been taking probabilities as "objective"
- but, in reality, usually are not (except in casinos, etc.)
- So far, have been taking probabilities as "objective"
- but, in reality, usually are not (except in casinos, etc.)
- if buy a share of IBM
- So far, have been taking probabilities as "objective"
- but, in reality, usually are not (except in casinos, etc.)
- if buy a share of IBM
- could go up by $\$ 10$
- So far, have been taking probabilities as "objective"
- but, in reality, usually are not (except in casinos, etc.)
- if buy a share of IBM
- could go up by $\$ 10$
- could go down by $\$ 7$
- So far, have been taking probabilities as "objective"
- but, in reality, usually are not (except in casinos, etc.)
- if buy a share of IBM
- could go up by $\$ 10$
- could go down by $\$ 7$
- could stay the same
- So far, have been taking probabilities as "objective"
- but, in reality, usually are not (except in casinos, etc.)
- if buy a share of IBM
- could go up by $\$ 10$
- could go down by $\$ 7$
- could stay the same
- probabilities of these events not "prescribed"-- they are subjective
- So far, have been taking probabilities as "objective"
- but, in reality, usually are not (except in casinos, etc.)
- if buy a share of IBM
- could go up by $\$ 10$
- could go down by $\$ 7$
- could stay the same
- probabilities of these events not "prescribed"-- they are subjective
- Savage (1954) reformulates vN-M axioms so that apply to case of subjective probability
- Independence axiom becomes:
- Independence axiom becomes:
- if $\ell \succsim \ell^{\prime}$
- Independence axiom becomes:
- if $\ell \succsim \ell^{\prime}$
- then for all events E and all $\hat{\ell}$

Proposition (Savage): if \succsim satisfies Savage’s axioms

Proposition (Savage): if \succsim satisfies Savage’s axioms

- then there exists a probability distribution $p(\cdot)$ and utility function $u: X \rightarrow \mathbb{R}$ such that

Proposition (Savage): if \succsim satisfies Savage’s axioms

- then there exists a probability distribution $p(\cdot)$ and utility function $u: X \rightarrow \mathbb{R}$ such that
- $\quad p(E)=$ DM's probability of E, for all E

Proposition (Savage): if \succsim satisfies Savage’s axioms

- then there exists a probability distribution $p(\cdot)$ and utility function $u: X \rightarrow \mathbb{R}$ such that
- $\quad p(E)=$ DM's probability of E, for all E
- $\ell \succsim \ell^{\prime} \leftrightarrow$

Proposition (Savage): if \succsim satisfies Savage’s axioms

- then there exists a probability distribution $p(\cdot)$ and utility function $u: X \rightarrow \mathbb{R}$ such that
- $\quad p(E)=$ DM's probability of E, for all E
- $\ell \succsim \ell^{\prime} \leftrightarrow$

$$
\sum_{E} p(E) u\left(x_{\ell E}\right) \geq \sum_{E} p(E) u\left(x_{\ell^{\prime} E}\right),
$$

Proposition (Savage): if \succsim satisfies Savage’s axioms

- then there exists a probability distribution $p(\cdot)$ and utility function $u: X \rightarrow \mathbb{R}$ such that
- $\quad p(E)=$ DM's probability of E, for all E
- $\ell \succsim \ell^{\prime} \leftrightarrow$
$\sum_{E} p(E) u\left(x_{\ell E}\right) \geq \sum_{E} p(E) u\left(x_{\ell^{\prime} E}\right)$,
- where $x_{\ell E}=$ outcome of lottery ℓ in state E

$$
x_{\ell^{\prime} E}=\text { outcome of lottery } \ell^{\prime} \text { in state } E
$$

- Famous violation of Savage's axioms due to D. Ellsberg
- Famous violation of Savage’s axioms due to D. Ellsberg
- same Ellsberg who leaked "Pentagon Paper" to press

Closed box containing 90 colored balls

	30 red	black	yellow
ℓ_{1}	$£ 100$	0	0
ℓ_{2}	0	$£ 100$	0
ℓ_{3}	$£ 100$	0	$£ 100$
ℓ_{4}	0	$£ 100$	$£ 100$

Closed box containing 90 colored balls

	30 red		black
ℓ_{1}	$£ 100$	0	yellow
ℓ_{2}	byy ℓ_{3}	$£ 100$	0
ℓ_{4}	$£ 100$	0	$£ 100$
	0	$£ 100$	$£ 100$

- most people prefer ℓ_{1} to ℓ_{2}

Closed box containing 90 colored balls

- most people prefer ℓ_{1} to ℓ_{2}
- most people prefer ℓ_{4} to ℓ_{3}

Closed box containing 90 colored balls

	30 red		black
ℓ_{1}	£100	yellow	
	0	0	
ℓ_{2}	0	$£ 100$	0
ℓ_{3}	$£ 100$	0	$£ 100$
ℓ_{4}	0	$£ 100$	$£ 100$

- most people prefer ℓ_{1} to ℓ_{2}
- most people prefer ℓ_{4} to ℓ_{3}
- violates Savage

Closed box containing 90 colored balls

	30 red		black
ℓ_{1}	£100 yellow		
ℓ_{2}	0	0	
ℓ_{3}	0	$£ 100$	0
ℓ_{4}	$£ 100$	0	$£ 100$
0	$£ 100$	$£ 100$	

- most people prefer ℓ_{1} to ℓ_{2}
- most people prefer ℓ_{4} to ℓ_{3}
- violates Savage
- $\quad \ell_{1} \succ \ell_{2} \rightarrow p($ red $)>p($ black $)$

Closed box containing 90 colored balls

	30 red		black
ℓ_{1}	£100 yellow		
ℓ_{2}	0	0	
ℓ_{3}	0	$£ 100$	0
ℓ_{4}	$£ 100$	0	$£ 100$
	0	$£ 100$	$£ 100$

- most people prefer ℓ_{1} to ℓ_{2}
- most people prefer ℓ_{4} to ℓ_{3}
- violates Savage
- $\ell_{1} \succ \ell_{2} \rightarrow p($ red $)>p($ black $)$
- $\ell_{4} \succ \ell_{3} \rightarrow p($ black $)+p($ yellow $)>p($ red $)+p($ yellow $)$

Kahneman-Tversky (1981)

Kahneman-Tversky (1981)

- casts doubt on whether can represent lottery unambiguously as $\ell=\left(p_{1}, \ldots, p_{n}\right)$

600 citizens exposed to deadly disease

600 citizens exposed to deadly disease

- treatment A: saves 200 lives

600 citizens exposed to deadly disease

- treatment A: saves 200 lives
- treatment B:

600 citizens exposed to deadly disease

- treatment A: saves 200 lives
- treatment B:

- most people choose A over B

600 citizens exposed to deadly disease

- treatment A: saves 200 lives
- treatment B:

- most people choose A over B
- treatment C: 400 die

600 citizens exposed to deadly disease

- treatment A: saves 200 lives
- treatment B:

- most people choose A over B
- treatment C: 400 die
- treatment D:

600 citizens exposed to deadly disease

- treatment A: saves 200 lives
- treatment B:

- most people choose A over B
- treatment C: 400 die
- treatment D:

- most people choose D over C

600 citizens exposed to deadly disease

- treatment A: saves 200 lives
- treatment B:

- most people choose A over B
- treatment C: 400 die
- treatment D:

- most people choose D over C
- but A equivalent to C, B equivalent to D !
- Have shown you 3 "anomalies"
- Have shown you 3 "anomalies"
- Allais
- Have shown you 3 "anomalies"
- Allais
- Ellsberg
- Have shown you 3 "anomalies"
- Allais
- Ellsberg
- Kahneman-Tversky
- Have shown you 3 "anomalies"
- Allais
- Ellsberg
- Kahneman-Tversky
- there are about 8 or 9 more
- Have shown you 3 "anomalies"
- Allais
- Ellsberg
- Kahneman-Tversky
- there are about 8 or 9 more
- theoretical problem
- Have shown you 3 "anomalies"
- Allais
- Ellsberg
- Kahneman-Tversky
- there are about 8 or 9 more
- theoretical problem
- there is a model that accounts for each of the dozen problems
- Have shown you 3 "anomalies"
- Allais
- Ellsberg
- Kahneman-Tversky
- there are about 8 or 9 more
- theoretical problem
- there is a model that accounts for each of the dozen problems
- but that means there are 12 models
- Have shown you 3 "anomalies"
- Allais
- Ellsberg
- Kahneman-Tversky
- there are about 8 or 9 more
- theoretical problem
- there is a model that accounts for each of the dozen problems
- but that means there are 12 models
- by contrast in early days of decision theory, just one model
- Have shown you 3 "anomalies"
- Allais
- Ellsberg
- Kahneman-Tversky
- there are about 8 or 9 more
- theoretical problem
- there is a model that accounts for each of the dozen problems
- but that means there are 12 models
- by contrast in early days of decision theory, just one model
- challenge: to unify the 12

