Models as Parables: The Example of Money

E. Maskin

Newton Institute, Cambridge
April 29, 2015

- Models are necessarily simplifications of reality
- Models are necessarily simplifications of reality
- model as complicated as reality would be useless
- Models are necessarily simplifications of reality
- model as complicated as reality would be useless
- for prediction
- Models are necessarily simplifications of reality
- model as complicated as reality would be useless
- for prediction
- for understanding
- Models are necessarily simplifications of reality
- model as complicated as reality would be useless
- for prediction
- for understanding
- sometimes models so oversimplified that not even good approximation of reality
- Models are necessarily simplifications of reality
- model as complicated as reality would be useless
- for prediction
- for understanding
- sometimes models so oversimplified that not even good approximation of reality
- nevertheless can be useful, because captures something real
- Models are necessarily simplifications of reality
- model as complicated as reality would be useless
- for prediction
- for understanding
- sometimes models so oversimplified that not even good approximation of reality
- nevertheless can be useful, because captures something real
- will illustrate point by example of money

Strange as it may seem

Strange as it may seem

- no natural role for money in standard economic model

Strange as it may seem

- no natural role for money in standard economic model
- can put money in artificially, but serves no useful function

Suppose

Suppose

- 2 consumer goods: apples and bananas

Suppose

- 2 consumer goods: apples and bananas
- 2 groups of consumers (equal numbers)

Suppose

- 2 consumer goods: apples and bananas
- 2 groups of consumers (equal numbers)
- apple growers - - each grows bushel of apples

Suppose

- 2 consumer goods: apples and bananas
- 2 groups of consumers (equal numbers)
- apple growers - - each grows bushel of apples
- banana growers - - each grows bushel of bananas

Suppose

- 2 consumer goods: apples and bananas
- 2 groups of consumers (equal numbers)
- apple growers - - each grows bushel of apples
- banana growers - - each grows bushel of bananas
- each consumer also has $£ 10$
- in economic models, consumers normally maximize preferences (maximize utility)
- in economic models, consumers normally maximize preferences (maximize utility)
- obtain best possible combination (bundle) of goods they can
- in economic models, consumers normally maximize preferences (maximize utility)
- obtain best possible combination (bundle) of goods they can
- subject to their income or wealth
- in economic models, consumers normally maximize preferences (maximize utility)
- obtain best possible combination (bundle) of goods they can
- subject to their income or wealth
- in apple/ banana model, preferences are over different bundles of apples and bananas
- in economic models, consumers normally maximize preferences (maximize utility)
- obtain best possible combination (bundle) of goods they can
- subject to their income or wealth
- in apple/ banana model, preferences are over different bundles of apples and bananas

$$
\begin{aligned}
& \left(x_{A}, x_{B}\right) \underset{\sim}{\imath}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \\
& u\left(x_{A}, x_{B}\right) \geq u\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \quad u=\text { utility function }
\end{aligned}
$$

- Assume (for simplicity) that all consumers have utility function
- Assume (for simplicity) that all consumers have utility function
(1) $u\left(x_{A}, x_{B}\right)=v_{A}\left(x_{A}\right)+v_{B}\left(x_{B}\right)$
- Assume (for simplicity) that all consumers have utility function
(1) $u\left(x_{A}, x_{B}\right)=v_{A}\left(x_{A}\right)+v_{B}\left(x_{B}\right)$
- let $p_{A}=$ price of bushel apples

$$
p_{B}=\text { price of bushel of bananas }
$$

- Assume (for simplicity) that all consumers have utility function
(1) $u\left(x_{A}, x_{B}\right)=v_{A}\left(x_{A}\right)+v_{B}\left(x_{B}\right)$
- let $p_{A}=$ price of bushel apples

$$
p_{B}=\text { price of bushel of bananas }
$$

- apple growers maximize (1) subject to

$$
p_{A} x_{A}+p_{B} x_{B} \leq p_{A} \cdot 1+10
$$

- Assume (for simplicity) that all consumers have utility function
(1) $u\left(x_{A}, x_{B}\right)=v_{A}\left(x_{A}\right)+v_{B}\left(x_{B}\right)$
- let $p_{A}=$ price of bushel apples

$$
p_{B}=\text { price of bushel of bananas }
$$

- apple growers maximize (1) subject to

$$
p_{A} x_{A}+p_{B} x_{B} \leq p_{A} \cdot 1+10
$$

$-\operatorname{solution}:\left(x_{A}^{A}, x_{B}^{A}\right)$

- Assume (for simplicity) that all consumers have utility function
(1) $u\left(x_{A}, x_{B}\right)=v_{A}\left(x_{A}\right)+v_{B}\left(x_{B}\right)$
- let $p_{A}=$ price of bushel apples

$$
p_{B}=\text { price of bushel of bananas }
$$

- apple growers maximize (1) subject to

$$
p_{A} x_{A}+p_{B} x_{B} \leq p_{A} \cdot 1+10
$$

- solution: $\left(x_{A}^{A}, x_{B}^{A}\right)$
- banana growers maximize (1) subject to

$$
p_{A} x_{A}+p_{B} x_{B} \leq p_{B} \cdot 1+10
$$

- Assume (for simplicity) that all consumers have utility function
(1) $u\left(x_{A}, x_{B}\right)=v_{A}\left(x_{A}\right)+v_{B}\left(x_{B}\right)$
- let $p_{A}=$ price of bushel apples

$$
p_{B}=\text { price of bushel of bananas }
$$

- apple growers maximize (1) subject to

$$
p_{A} x_{A}+p_{B} x_{B} \leq p_{A} \cdot 1+10
$$

- solution: $\left(x_{A}^{A}, x_{B}^{A}\right)$
- banana growers maximize (1) subject to

$$
p_{A} x_{A}+p_{B} x_{B} \leq p_{B} \cdot 1+10
$$

- solution: $\left(x_{A}^{B}, x_{B}^{B}\right)$
- goal of analysis: to predict equilibrium prices and bundles
- goal of analysis: to predict equilibrium prices and bundles

$$
\begin{aligned}
& -p_{A}, p_{B}, x_{A}^{A}, x_{B}^{A}, x_{A}^{B}, x_{B}^{B} \text { such that } \\
& \quad x_{A}^{A}+x_{A}^{B}=1 \quad \text { and } \quad x_{B}^{A}+x_{B}^{B}=1
\end{aligned}
$$

- goal of analysis: to predict equilibrium prices and bundles

$$
\begin{aligned}
& -p_{A}, p_{B}, x_{A}^{A}, x_{B}^{A}, x_{A}^{B}, x_{B}^{B} \text { such that } \\
& \quad x_{A}^{A}+x_{A}^{B}=1 \quad \text { and } \quad x_{B}^{A}+x_{B}^{B}=1
\end{aligned}
$$

- but basic difficulty:
- goal of analysis: to predict equilibrium prices and bundles

$$
\begin{aligned}
& -p_{A}, p_{B}, x_{A}^{A}, x_{B}^{A}, x_{A}^{B}, x_{B}^{B} \text { such that } \\
& \quad x_{A}^{A}+x_{A}^{B}=1 \quad \text { and } \quad x_{B}^{A}+x_{B}^{B}=1
\end{aligned}
$$

- but basic difficulty:
- each consumer starts with $£ 10$
- goal of analysis: to predict equilibrium prices and bundles

$$
\begin{aligned}
& -p_{A}, p_{B}, x_{A}^{A}, x_{B}^{A}, x_{A}^{B}, x_{B}^{B} \text { such that } \\
& \quad x_{A}^{A}+x_{A}^{B}=1 \quad \text { and } \quad x_{B}^{A}+x_{B}^{B}=1
\end{aligned}
$$

- but basic difficulty:
- each consumer starts with $£ 10$
- wants to spend it all
- goal of analysis: to predict equilibrium prices and bundles

$$
\begin{aligned}
& -p_{A}, p_{B}, x_{A}^{A}, x_{B}^{A}, x_{A}^{B}, x_{B}^{B} \text { such that } \\
& \quad x_{A}^{A}+x_{A}^{B}=1 \quad \text { and } \quad x_{B}^{A}+x_{B}^{B}=1
\end{aligned}
$$

- but basic difficulty:
- each consumer starts with $£ 10$
- wants to spend it all
- so nobody wants to hold it at end
- goal of analysis: to predict equilibrium prices and bundles

$$
\begin{aligned}
& -p_{A}, p_{B}, x_{A}^{A}, x_{B}^{A}, x_{A}^{B}, x_{B}^{B} \text { such that } \\
& \quad x_{A}^{A}+x_{A}^{B}=1 \quad \text { and } \quad x_{B}^{A}+x_{B}^{B}=1
\end{aligned}
$$

- but basic difficulty:
- each consumer starts with $£ 10$
- wants to spend it all
- so nobody wants to hold it at end
- nowhere for it to go

Several standard ways of handling this (all rather artificial)

Several standard ways of handling this (all rather artificial)

- put money in utility function

$$
u\left(x_{A}, x_{B}, x_{M}\right) \quad x_{M}=\text { money holding }
$$

Several standard ways of handling this (all rather artificial)

- put money in utility function

$$
u\left(x_{A}, x_{B}, x_{M}\right) \quad x_{M}=\text { money holding }
$$

- money spent on other (unmodeled) goods

Several standard ways of handling this (all rather artificial)

- put money in utility function

$$
u\left(x_{A}, x_{B}, x_{M}\right) \quad x_{M}=\text { money holding }
$$

- money spent on other (unmodeled) goods
- require each consumer to return $£ 10$ at end

In this model, don't need money at all

In this model, don't need money at all

- consumer can trade bananas for apples at rate p_{A} / p_{B}

In this model, don't need money at all

- consumer can trade bananas for apples at rate

$$
p_{A} / p_{B}
$$

- i.e., barter will suffice

What's missing?

What's missing?

- one idea: money is store of value

What's missing?

- one idea: money is store of value
- allows consumer to transfer wealth from present to future

Samuelson 1958 Model

Samuelson 1958 Model

- each consumer lives for 2 periods

Samuelson 1958 Model

- each consumer lives for 2 periods
- young in $1^{\text {st }}$ period, produces bushel of apples

Samuelson 1958 Model

- each consumer lives for 2 periods
- young in $1^{\text {st }}$ period, produces bushel of apples
- old in $2^{\text {nd }}$ period, doesn't produce

Samuelson 1958 Model

- each consumer lives for 2 periods
- young in $1^{s t}$ period, produces bushel of apples
- old in $2^{\text {nd }}$ period, doesn't produce
- apples last for just one period

Samuelson 1958 Model

- each consumer lives for 2 periods
- young in $1^{\text {st }}$ period, produces bushel of apples
- old in $2^{\text {nd }}$ period, doesn't produce
- apples last for just one period
- generation t of consumers $t=1,2,3, \ldots$

Samuelson 1958 Model

- each consumer lives for 2 periods
- young in $1^{\text {st }}$ period, produces bushel of apples
- old in $2^{\text {nd }}$ period, doesn't produce
- apples last for just one period
- generation t of consumers $t=1,2,3, \ldots$
- young in period t

Samuelson 1958 Model

- each consumer lives for 2 periods
- young in $1^{\text {st }}$ period, produces bushel of apples
- old in $2^{\text {nd }}$ period, doesn't produce
- apples last for just one period
- generation t of consumers $t=1,2,3, \ldots$
- young in period t
- old in period $t+1$

Samuelson 1958 Model

- each consumer lives for 2 periods
- young in $1^{\text {st }}$ period, produces bushel of apples
- old in $2^{\text {nd }}$ period, doesn't produce
- apples last for just one period
- generation t of consumers $t=1,2,3, \ldots$
- young in period t
- old in period $t+1$
$u\left(x_{t}, x_{t+1}\right)=v\left(x_{t}\right)+v\left(x_{t+1}\right) \quad x_{t}=$ apple consumption in period t

Suppose there is no money

Suppose there is no money

- old consumer has nothing to offer

Suppose there is no money

- old consumer has nothing to offer
- $\operatorname{so} x_{t}=1 \quad x_{t+1}=0$

Suppose there is no money

- old consumer has nothing to offer
- so $x_{t}=1 \quad x_{t+1}=0$
- if $v\left(x_{t}\right)=\sqrt{x_{t}}$, then $u(1,0)=1$

Now, introduce money

Now, introduce money

- suppose old consumers in period 1 endowed with $£ 10$ each

Now, introduce money

- suppose old consumers in period 1 endowed with $£ 10$ each
- let $p_{t}=$ price of bushel of applesin period t

Now, introduce money

- suppose old consumers in period 1 endowed with $£ 10$ each
- let $p_{t}=$ price of bushel of applesin period t
- old consumer in period t has money m_{t}

Now, introduce money

- suppose old consumers in period 1 endowed with $£ 10$ each
- let $p_{t}=$ price of bushel of applesin period t
- old consumer in period t has money m_{t}

$$
\text { - buys } \frac{m_{t}}{p_{t}} \text { bushels }
$$

Now, introduce money

- suppose old consumers in period 1 endowed with $£ 10$ each
- let $p_{t}=$ price of bushel of applesin period t
- old consumer in perio $d t$ has money m_{t}
- buys $\frac{m_{t}}{p_{t}}$ bushels
- next period, old consumer has $m_{t+1}=m_{t}$ and

$$
\text { buys } \frac{m_{t+1}}{p_{t+1}}
$$

In equilibrium

In equilibrium

- $m_{1}=m_{2}=\ldots=£ 10$

In equilibrium

- $m_{1}=m_{2}=\ldots=£ 10$
- $p_{1}=p_{2}=\ldots=£ 20$

In equilibrium

- $m_{1}=m_{2}=\ldots=£ 10$
- $p_{1}=p_{2}=\ldots=£ 20$
- $x_{t}=x_{t+1}=\frac{1}{2}$

In equilibrium

- $m_{1}=m_{2}=\ldots=£ 10$
- $p_{1}=p_{2}=\ldots=£ 20$
- $x_{t}=x_{t+1}=\frac{1}{2}$
- consumer in generation t gets utility

$$
v\left(\frac{1}{2}\right)+v\left(\frac{1}{2}\right)
$$

In equilibrium

- $m_{1}=m_{2}=\ldots=£ 10$
- $p_{1}=p_{2}=\ldots=£ 20$
- $x_{t}=x_{t+1}=\frac{1}{2}$
- consumer in generation t gets utility

$$
v\left(\frac{1}{2}\right)+v\left(\frac{1}{2}\right)
$$

- if $v(x)=\sqrt{x}$, then gets $2 \sqrt{1 / 2}>1$

In equilibrium

- $m_{1}=m_{2}=\ldots=£ 10$
- $p_{1}=p_{2}=\ldots=£ 20$
- $x_{t}=x_{t+1}=\frac{1}{2}$
- consumer in generation t gets utility

$$
v\left(\frac{1}{2}\right)+v\left(\frac{1}{2}\right)
$$

- if $v(x)=\sqrt{x}$, then gets $2 \sqrt{1 / 2}>1$
- so consumer better off with money

In equilibrium

- $m_{1}=m_{2}=\ldots=£ 10$
- $p_{1}=p_{2}=\ldots=£ 20$
- $x_{t}=x_{t+1}=\frac{1}{2}$
- consumer in generation t gets utility

$$
v\left(\frac{1}{2}\right)+v\left(\frac{1}{2}\right)
$$

- if $v(x)=\sqrt{x}$, then gets $2 \sqrt{1 / 2}>1$
- so consumer better off with money
- can transfer wealth from one period to next
- in this stylized model, money is only way to transfer wealth from one period to another
- in this stylized model, money is only way to transfer wealth from one period to another
- if had some other long-lived asset (e.g., land), wouldn't need money
- Another use for money: as medium of exchange
- Another use for money: as medium of exchange
- if I grow apples but want bananas
- Another use for money: as medium of exchange
- if I grow apples but want bananas
- in barter economy, must wait until find someone who has bananas and wants apples
- Another use for money: as medium of exchange
- if I grow apples but want bananas
- in barter economy, must wait until find someone who has bananas and wants apples
- this may take time
- Another use for money: as medium of exchange
- if I grow apples but want bananas
- in barter economy, must wait until find someone who has bananas and wants apples
- this may take time
- as Jevons pointed out: barter requires double coincidence of wants

But 2 reasons why this is incomplete argument

But 2 reasons why this is incomplete argument (1) in well-organized economy,

But 2 reasons why this is incomplete argument
(1) in well-organized economy,

- there is place where you can go to buy bananas and place where you can buy apples

But 2 reasons why this is incomplete argument
(1) in well-organized economy,

- there is place where you can go to buy bananas and place where you can buy apples
- can even imagine setting up place where you can exchange bananas for apples

But 2 reasons why this is incomplete argument

(1) in well-organized economy,

- there is place where you can go to buy bananas and place where you can buy apples
- can even imagine setting up place where you can exchange bananas for apples
- so barter need not impose waiting costs

But 2 reasons why this is incomplete argument
(1) in well-organized economy,

- there is place where you can go to buy bananas and place where you can buy apples
- can even imagine setting up place where you can exchange bananas for apples
- so barter need not impose waiting costs
(2) if I have apples and want bananas

But 2 reasons why this is incomplete argument
(1) in well-organized economy,

- there is place where you can go to buy bananas and place where you can buy apples
- can even imagine setting up place where you can exchange bananas for apples
- so barter need not impose waiting costs
(2) if I have apples and want bananas
- why can't I go to bananas seller and offer apples as payment

But 2 reasons why this is incomplete argument

(1) in well-organized economy,

- there is place where you can go to buy bananas and place where you can buy apples
- can even imagine setting up place where you can exchange bananas for apples
- so barter need not impose waiting costs
(2) if I have apples and want bananas
- why can't I go to bananas seller and offer apples as payment
- even if she doesn't want apples herself, she could always sell them

Very simple model captures idea that

Very simple model captures idea that

- banana seller may be reluctant to accept apples because can't probably evaluate them

Very simple model captures idea that

- banana seller may be reluctant to accept apples because can't probably evaluate them
- she's expert in bananas not apples

Very simple model captures idea that

- banana seller may be reluctant to accept apples because can't probably evaluate them
- she's expert in bananas not apples
- may not be able to distinguish between good and bad apples

Very simple model captures idea that

- banana seller may be reluctant to accept apples because can't probably evaluate them
- she's expert in bananas not apples
- may not be able to distinguish between good and bad apples
- even this not problem if I were equally ignorant about apples

Very simple model captures idea that

- banana seller may be reluctant to accept apples because can't probably evaluate them
- she's expert in bananas not apples
- may not be able to distinguish between good and bad apples
- even this not problem if I were equally ignorant about apples
- but if apple seller suspects I know more

Very simple model captures idea that

- banana seller may be reluctant to accept apples because can't probably evaluate them
- she's expert in bananas not apples
- may not be able to distinguish between good and bad apples
- even this not problem if I were equally ignorant about apples
- but if apple seller suspects I know more
- will worry I will take advantage of her

Very simple model captures idea that

- banana seller may be reluctant to accept apples because can't probably evaluate them
- she's expert in bananas not apples
- may not be able to distinguish between good and bad apples
- even this not problem if I were equally ignorant about apples
- but if apple seller suspects I know more
- will worry I will take advantage of her
- I will foist bad apples off on her

As consumer and producer,

As consumer and producer,

- we are familiar with goods we buy and sell regularly

As consumer and producer,

- we are familiar with goods we buy and sell regularly
- we have little experience with many other goods

As consumer and producer,

- we are familiar with goods we buy and sell regularly
- we have little experience with many other goods
- we'll be wary of someone trying to sell us one of these goods

As consumer and producer,

- we are familiar with goods we buy and sell regularly
- we have little experience with many other goods
- we'll be wary of someone trying to sell us one of these goods
- afraid we'll be stuck with "bad apples"

As consumer and producer,

- we are familiar with goods we buy and sell regularly
- we have little experience with many other goods
- we'll be wary of someone trying to sell us one of these goods
- afraid we'll be stuck with "bad apples"
- adverse selection

Role of money

Role of money

- money is good that can be evaluated by all traders

Role of money

- money is good that can be evaluated by all traders
- device for overcoming adverse selection

Banerjee-Maskin 1996 Model

Banerjee-Maskin 1996 Model

- many goods : apples, bananas, ...

Banerjee-Maskin 1996 Model

- many goods : apples, bananas, ...
- each consumer can produce one good i

Banerjee-Maskin 1996 Model

- many goods : apples, bananas, ...
- each consumer can produce one good i
- e.g., apples

Banerjee-Maskin 1996 Model

- many goods : apples, bananas, ...
- each consumer can produce one good i
- e.g., apples
- can produce high-quality or low-quality apples

Banerjee-Maskin 1996 Model

- many goods : apples, bananas, ...
- each consumer can produce one good i
- e.g., apples
- can produce high-quality or low-quality apples
- high-quality goods more costly to produce Δc

Banerjee-Maskin 1996 Model

- many goods : apples, bananas, ...
- each consumer can produce one good i
- e.g., apples
- can produce high-quality or low-quality apples
- high-quality goods more costly to produce Δc
- high quality goods give higher satisfaction Δb

Banerjee-Maskin 1996 Model

- many goods : apples, bananas, ...
- each consumer can produce one good i
- e.g., apples
- can produce high-quality or low-quality apples
- high-quality goods more costly to produce Δc
- high quality goods give higher satisfaction Δb
- $\Delta b-\Delta c>0$

Banerjee-Maskin 1996 Model

- many goods : apples, bananas, ...
- each consumer can produce one good i
- e.g., apples
- can produce high-quality or low-quality apples
- high-quality goods more costly to produce Δc
- high quality goods give higher satisfaction Δb
- $\Delta b-\Delta c>0$
- each consumer consumes only one kind of good j

Banerjee-Maskin 1996 Model

- many goods : apples, bananas, ...
- each consumer can produce one good i
- e.g., apples
- can produce high-quality or low-quality apples
- high-quality goods more costly to produce Δc
- high quality goods give higher satisfaction Δb
$-\Delta b-\Delta c>0$
- each consumer consumes only one kind of good j
- e.g., bananas

Banerjee-Maskin 1996 Model

- many goods : apples, bananas, ...
- each consumer can produce one good i
- e.g., apples
- can produce high-quality or low-quality apples
- high-quality goods more costly to produce Δc
- high quality goods give higher satisfaction Δb
- $\Delta b-\Delta c>0$
- each consumer consumes only one kind of good j
- e.g., bananas
- all good pairs (i, j) equally likely

Banerjee-Maskin 1996 Model

- many goods : apples, bananas, ...
- each consumer can produce one good i
- e.g., apples
- can produce high-quality or low-quality apples
- high-quality goods more costly to produce Δc
- high quality goods give higher satisfaction Δb
- $\Delta b-\Delta c>0$
- each consumer consumes only one kind of good j
- e.g., bananas
- all good pairs (i, j) equally likely
- consumer is

Banerjee-Maskin 1996 Model

- many goods : apples, bananas, ...
- each consumer can produce one good i
- e.g., apples
- can produce high-quality or low-quality apples
- high-quality goods more costly to produce Δc
- high quality goods give higher satisfaction Δb
- $\Delta b-\Delta c>0$
- each consumer consumes only one kind of good j
- e.g., bananas
- all good pairs (i, j) equally likely
- consumer is
- informed about good she produces or consumes

Banerjee-Maskin 1996 Model

- many goods : apples, bananas, ...
- each consumer can produce one good i
- e.g., apples
- can produce high-quality or low-quality apples
- high-quality goods more costly to produce Δc
- high quality goods give higher satisfaction Δb
- $\Delta b-\Delta c>0$
- each consumer consumes only one kind of good j
- e.g., bananas
- all good pairs (i, j) equally likely
- consumer is
- informed about good she produces or consumes
- can't distinguish between high and low quality for other goods

Banerjee-Maskin 1996 Model

- many goods : apples, bananas, ...
- each consumer can produce one good i
- e.g., apples
- can produce high-quality or low-quality apples
- high-quality goods more costly to produce Δc
- high quality goods give higher satisfaction Δb
- $\Delta b-\Delta c>0$
- each consumer consumes only one kind of good j
- e.g., bananas
- all good pairs (i, j) equally likely
- consumer is
- informed about good she produces or consumes
- can't distinguish between high and low quality for other goods
- all trade is bilateral

Banerjee-Maskin 1996 Model

- many goods : apples, bananas, ...
- each consumer can produce one good i
- e.g., apples
- can produce high-quality or low-quality apples
- high-quality goods more costly to produce Δc
- high quality goods give higher satisfaction Δb
- $\Delta b-\Delta c>0$
- each consumer consumes only one kind of good j
- e.g., bananas
- all good pairs (i,j) equally likely
- consumer is
- informed about good she produces or consumes
- can't distinguish between high and low quality for other goods
- all trade is bilateral
- to buy bananas, must go to banana shop and give banana seller something in exchange

Banerjee-Maskin 1996 Model

- many goods : apples, bananas, ...
- each consumer can produce one good i
- e.g., apples
- can produce high-quality or low-quality apples
- high-quality goods more costly to produce Δc
- high quality goods give higher satisfaction Δb
- $\Delta b-\Delta c>0$
- each consumer consumes only one kind of good j
- e.g., bananas
- all good pairs (i,j) equally likely
- consumer is
- informed about good she produces or consumes
- can't distinguish between high and low quality for other goods
- all trade is bilateral
- to buy bananas, must go to banana shop and give banana seller something in exchange
- T periods in which exchange occurs

Consider sequence of trades by which uninformed consumer acquires high-quality apples.

Consider sequence of trades by which uninformed consumer acquires high-quality apples.

- at some point, some uninformed buyer must buy high-quality apples from informed seller

Consider sequence of trades by which uninformed consumer acquires high-quality apples.

- at some point, some uninformed buyer must buy high-quality apples from informed seller
- only informed consumers produce apples

Consider sequence of trades by which uninformed consumer acquires high-quality apples.

- at some point, some uninformed buyer must buy high-quality apples from informed seller
- only informed consumers produce apples
- but seller would be foolish to see anything but low-quality apples

Consider sequence of trades by which uninformed consumer acquires high-quality apples.

- at some point, some uninformed buyer must buy high-quality apples from informed seller
- only informed consumers produce apples
- but seller would be foolish to see anything but low-quality apples
- buyer can't tell difference

Consider sequence of trades by which uninformed consumer acquires high-quality apples.

- at some point, some uninformed buyer must buy high-quality apples from informed seller
- only informed consumers produce apples
- but seller would be foolish to see anything but low-quality apples
- buyer can't tell difference
- so in equilibrium, all exchanges must involve at least one low-quality good

Consider sequence of trades by which uninformed consumer acquires high-quality apples.

- at some point, some uninformed buyer must buy high-quality apples from informed seller
- only informed consumers produce apples
- but seller would be foolish to see anything but low-quality apples
- buyer can't tell difference
- so in equilibrium, all exchanges must involve at least one low-quality good
- except in unlikely event of double coincidence of wants

Proposition: If T big enough

Proposition: If T big enough

- there is a unique equilibrium

Proposition: If T big enough

- there is a unique equilibrium
- only one low-quality good produced in equilibrium

Proposition: If T big enough

- there is a unique equilibrium
- only one low-quality good produced in equilibrium
- this low-quality good is involved in (almost) all trades

Proposition: If T big enough

- there is a unique equilibrium
- only one low-quality good produced in equilibrium
- this low-quality good is involved in (almost) all trades
- good is one for which discrepancy between low and high quality is smallest

Proposition: If T big enough

- there is a unique equilibrium
- only one low-quality good produced in equilibrium
- this low-quality good is involved in (almost) all trades
- good is one for which discrepancy between low and high quality is smallest
- this good functions as money
- As $T \rightarrow \infty$, amount of low-quality good produced $\rightarrow 0$
- As $T \rightarrow \infty$, amount of low-quality good produced $\rightarrow 0$
- same good can recirculate many times
- As $T \rightarrow \infty$, amount of low-quality good produced $\rightarrow 0$
- same good can recirculate many times
- More efficient to introduce fiat money
- As $T \rightarrow \infty$, amount of low-quality good produced $\rightarrow 0$
- same good can recirculate many times
- More efficient to introduce fiat money
- costless to produce
- As $T \rightarrow \infty$, amount of low-quality good produced $\rightarrow 0$
- same good can recirculate many times
- More efficient to introduce fiat money
- costless to produce
- recognized by everyone
- As $T \rightarrow \infty$, amount of low-quality good produced $\rightarrow 0$
- same good can recirculate many times
- More efficient to introduce fiat money
- costless to produce
- recognized by everyone
- eliminates need to produce low-quality good

