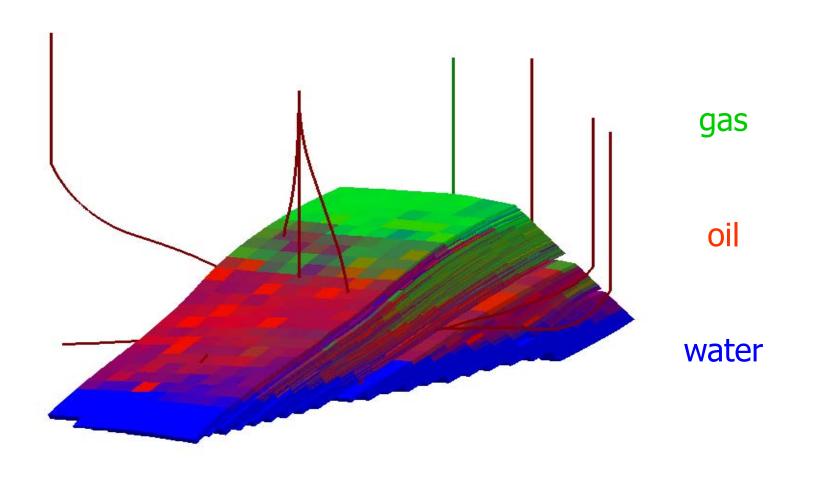
Assessing the Value of Information from Inverse Modelling for Optimising Long-Term Oil Reservoir Performance

Eduardo Barros, TU Delft Paul Van den Hof, TU Eindhoven <u>Jan Dirk Jansen</u>, TU Delft

Oil & gas reservoirs

fluids trapped in porous rock below impermeable 'cap rock'



Notation

System equations:
$$\mathbf{g}_k(\mathbf{u}_k, \mathbf{x}_{k-1}, \mathbf{x}_k, \mathbf{\theta}) = \mathbf{0}$$
, $k = 1, 2, ..., K$

Output equations: $\mathbf{j}_k(\mathbf{u}_k, \mathbf{x}_k, \mathbf{y}_k) = \mathbf{0}$

States:
$$\mathbf{x} = \begin{bmatrix} \mathbf{p}^T & \mathbf{s}^T \end{bmatrix}^T$$
 pressures, saturations

Parameters:
$$\mathbf{\theta} = \begin{bmatrix} \mathbf{k}^T & \mathbf{\phi}^T \end{bmatrix}^T$$
 perms, porosities, ...

Inputs:
$$\mathbf{u} = \begin{bmatrix} \mathbf{p}_{well}^T & \mathbf{q}_{well}^T \end{bmatrix}^T$$
 well pressures, total rates

Outputs:
$$\mathbf{y} = \begin{bmatrix} \mathbf{p}_{well}^T & \mathbf{q}_{well,o}^T & \mathbf{q}_{well,w}^T \end{bmatrix}^T$$
 well press., phase rates

Governing equations – simple example

- Oil and water only, no gravity, no capillary pressures
- Separate equations for p and S_w :

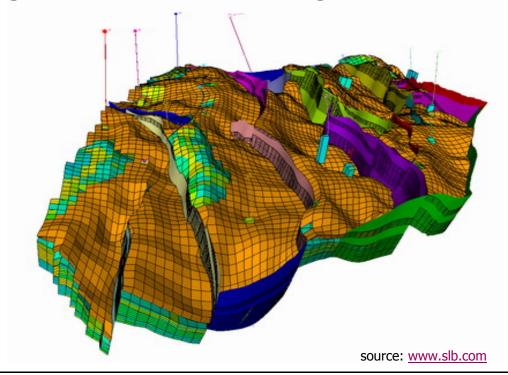
$$(-k\lambda_t \nabla^2 p + \phi c_t \frac{\partial p}{\partial t} = q_t) \quad \text{diffusion}$$

$$(v_t \nabla f_w(S_w) + \phi \frac{\partial S_w}{\partial t} = q_w) \text{ convection}$$

- λ_t , c_t and f_w are functions of S_w ; v_t is a function of p
- Coupled and nonlinear, (near-)elliptic, (near-)hyperbolic

Reservoir simulation

- 3-phases (gas, oil, water) or multiple components
 + thermal effects + chemical effects + geo-mechanics + ...
- Nonlinear PDEs discretized in time and space FD/FV
- Cornerpoint grids or unstructured grids



Reservoir simulation

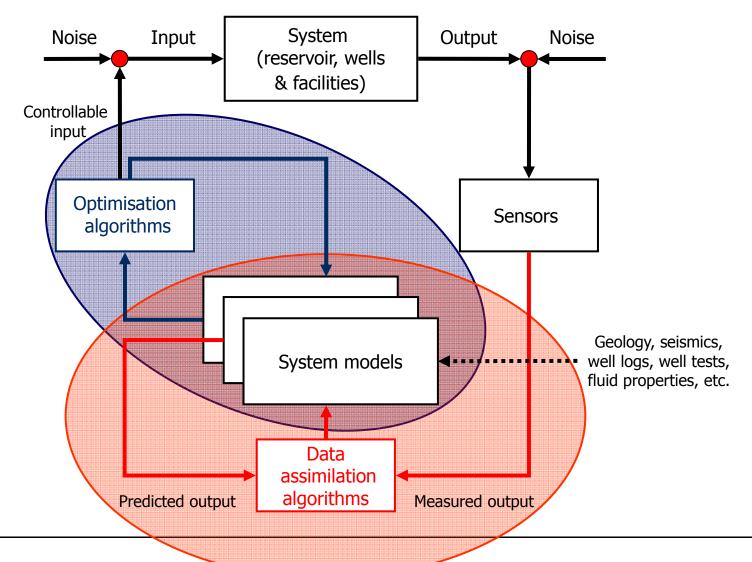
- 3-phases (gas, oil, water) or multiple components
 + thermal effects + chemical effects + geomechanics + ...
- Nonlinear PDEs discretized in time and space FD/FV
- Cornerpoint grids or unstructured grids
- Large variation in parameter values: $10^{-15} < k < 10^{-11}$ m²
- Typical model size: 10^4 – 10^6 cells, 50–500 time steps
- Fully implicit (Newton iterations) clock times: hours-days
- Typical code size: 10⁶-10⁷ lines (well models, PVT analysis)
- Research focused on upscaling, gridding, 'history matching' (inverse modeling), new physics, solvers, parallelization
- Primarily used in design phase: field (re-)development

Reservoir simulation models are used in 'batch mode'

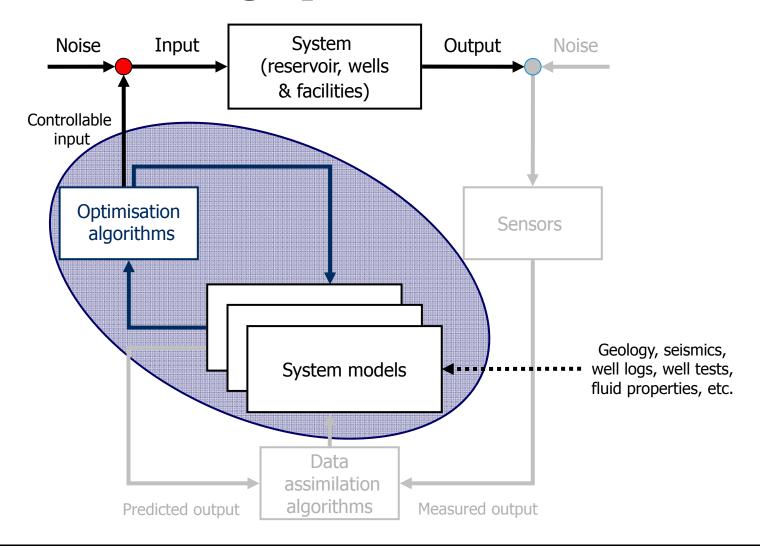
Closed-loop reservoir management

- Hypothesis: recovery can be significantly increased by changing reservoir management from a 'batch-type' to a near-continuous model-based controlled activity
- Key elements:
 - Optimization under geological uncertainties
 - Data assimilation for frequent updating of system models
- Inspiration:
 - Systems and control theory
 - Meteorology and oceanography
- A.k.a. real-time reservoir management, smart fields, intelligent fields, integrated operations, ...

Closed-loop reservoir management



Robust flooding optimisation



Robust flooding optimisation

• problem statement: $\max_{\mathbf{u}_{1:K}} \frac{1}{N} \sum_{i=1}^{N} J_i(\mathbf{u}_{1:K}, \mathbf{y}_{1:K}, \mathbf{\theta}_i)$ subject to

$$\mathbf{g}_{k}\left(\mathbf{u}_{k},\mathbf{x}_{k-1},\mathbf{x}_{k}\right)=\mathbf{0}$$

$$\mathbf{x}_0 = \mathbf{x}_0$$

$$\mathbf{j}_{k}\left(\mathbf{u}_{k},\mathbf{x}_{k},\mathbf{y}_{k}\right)=\mathbf{0}$$

• equality constraints:
$$\mathbf{c}_k(\mathbf{u}_k, \mathbf{y}_k) = \mathbf{0}$$

• inequality constraints:
$$\mathbf{d}_k(\mathbf{u}_k, \mathbf{y}_k) < \mathbf{0}$$
, $k = 1, 2, ..., K$

$$k = 1, 2, ..., K$$

10 wells, 100 time steps => 10000 optimization parameters

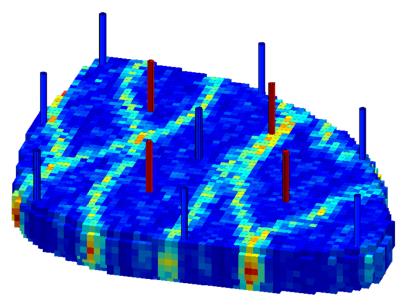
Optimisation techniques

- Global versus local
- Gradient-based versus gradient-free
- Constrained versus non-constrained
- 'Classical' versus 'non-classical' (genetic algorithms, simulated annealing, particle swarms, etc.)
- We use 'adjoint-based optimal control theory'
 - Gradient-based local optimum
 - Computational effort independent of number of controls
 - Objective function: ultimate recovery or monetary value
 - Controls: injection/production rates, pressures or valve openings
 - Beautiful, but code-intrusive and requires lots of programming

Anyway, the magic isn't in the method

12-well example

- 3D reservoir
- High-permeability channels
- 8 injectors, rate-controlled
- 4 producers, pressure-controlled
- Production period of 10 years
- 12 wells x 10 x 12 time steps gives 1440 optimization parameters
- ullet Optimisation of Net Present Value (NPV) ${\cal J}$

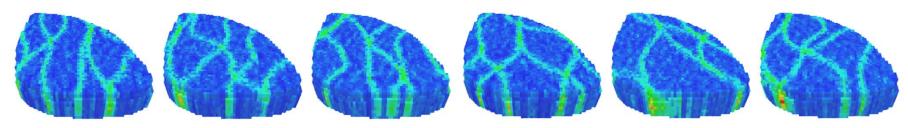


Van Essen et al., 2009

J =(value of oil – costs of water produced/injected)

Robust optimisation

Use ensemble of geological realisations (typically 100)

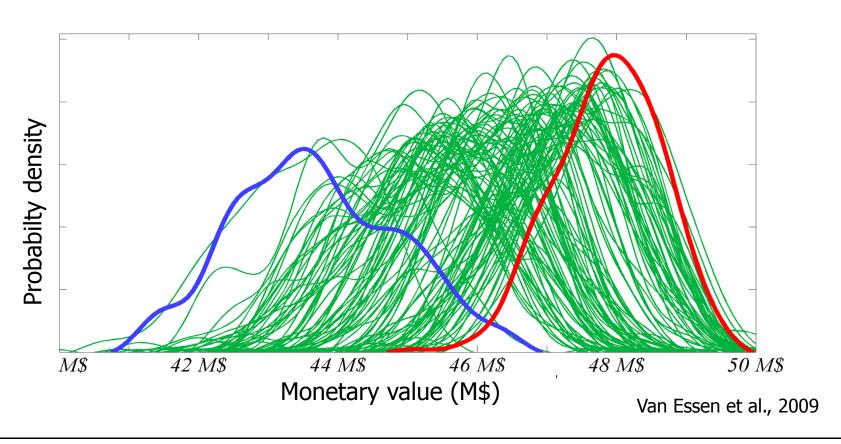


Van Essen et al., 2009

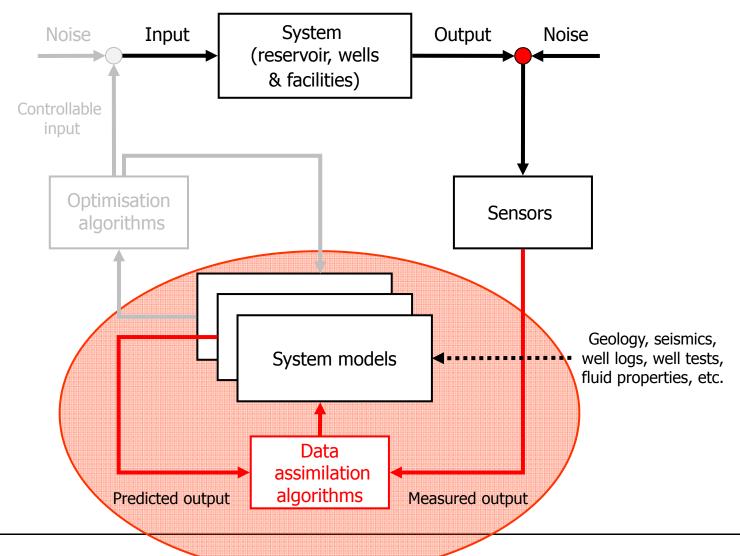
- Optimise expected value over ensemble
- Single strategy, not 100!
- If necessary include risk aversion (utility function)
- Computationally intensive

Robust optimisation results

3 control strategies applied to set of 100 realisations: reactive control, nominal optimisation, robust optimisation



'Computer-assisted history matching'



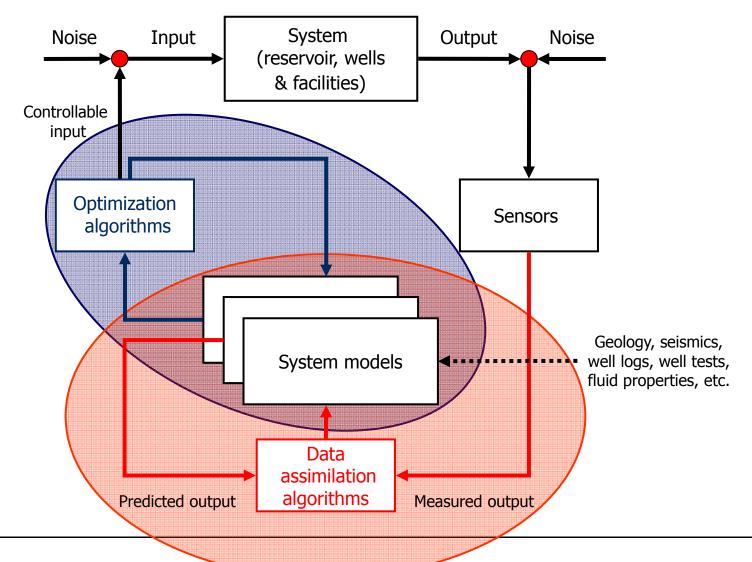
'Computer-assisted history matching' (Data assimilation/inverse modelling)

- Uncertain parameters, not initial conditions or states
- Parameters: permeabilities, porosities, fault multipliers, ...
- Data: production (oil, water, pressure), 4D seismics, ...
- Very ill-posed problem: many parameters, little info
- Variational methods Bayesian framework:

$$J = (\mathbf{d} - \mathbf{y})^T \mathbf{P}_d^{-1} (\mathbf{d} - \mathbf{y}) + (\mathbf{m} - \mathbf{m}_0)^T \mathbf{P}_m^{-1} (\mathbf{m} - \mathbf{m}_0)$$

- Ensemble Kalman filtering sequential methods
- Reservoir-specific methods (e.g. streamlines)
- 'Non-classical' methods simulated annealing, GAs, ...
- Monte Carlo methods MCMC with proxies

How to assess VOI in CLRM?

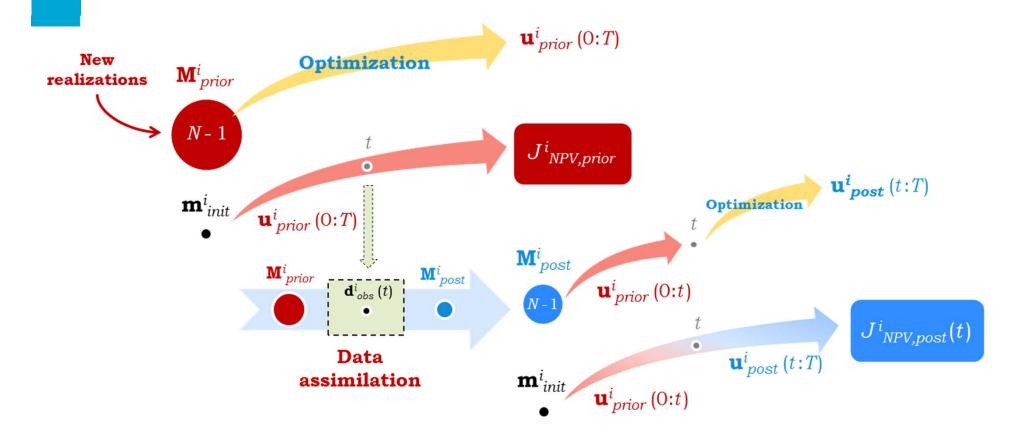


Workflow to assess VOI in advance (1)

- Generate initial ensemble of geological realizations
- Select one member as 'truth' and create synthetic data
- Generate new ensemble and perform robust optimization
- Rerun resulting strategy on 'truth' and compute NPV
- Perform CLRM using synthetic data
- ullet Rerun resulting strategy on 'truth' and compute Δ NPV
- Repeat for different synthetic 'truth's (loop over ensemble)
- Compute VOI as average of Δ NPVs

Workflow to assess VOI in advance (2)

• For ensemble member *i* :



Other measures and notes

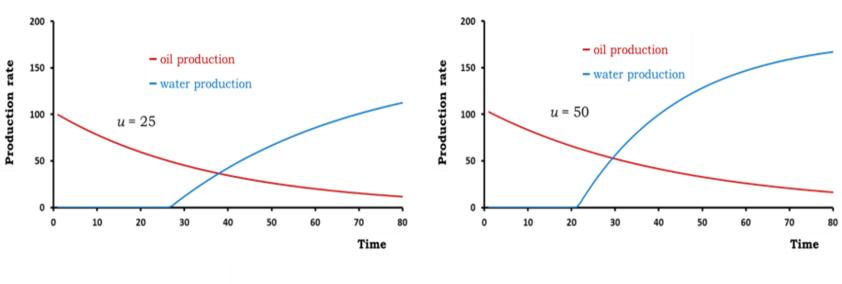
- Value Of Clairvoyance (VOC): VOI under sudden and complete revelation of the truth (VOI ≤ VOC) (VOC is upper bound to VOI; 'technical limit')
- Chance Of Knowing: $COK = VOI/VOC \ (0 \le COK \le 1)$
- Note 1: VOI has only meaning in a decision context; here the decision is the life-cycle production optimisation
- Note 2: Measurements costs are not taken into account. Data from an individual realisation may result in reduction in NPV. On average, data should always lead to an increased or equal NPV

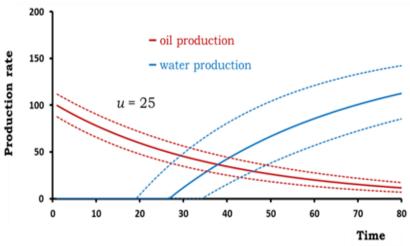
Numerical example 1

- Toy model based on 'decline curves'
- Scalar control variable: *u*
- Vector of uncertain parameters: $a(q_{o,ini})$

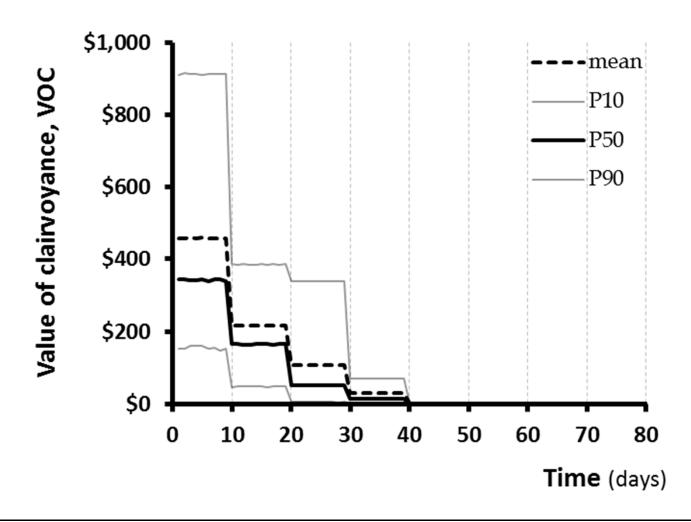
$$q_{w}(u)t) = H\left[t_{bt}\left(1 - \frac{1}{c_{3}}u\right)\right]\left(q_{w,\infty} + u\right)\left[1 - \exp\left(-\frac{t - t_{bt}\left(1 - \frac{1}{c_{3}}u\right)}{c_{4}a - \frac{1}{c_{5}}u}\right)\right]$$

Oil and water production example 1

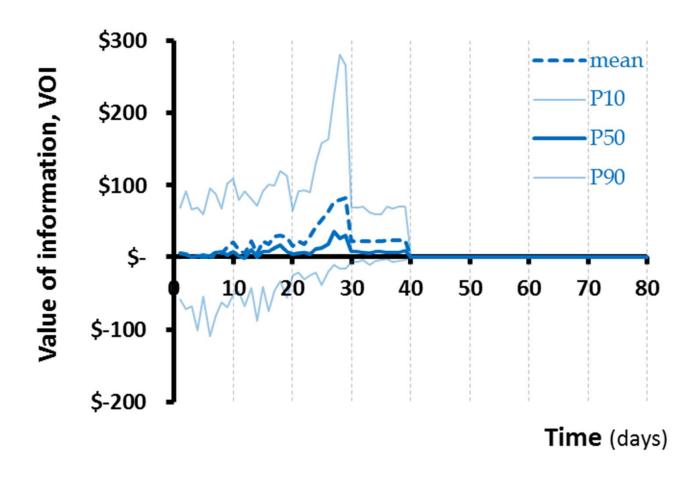




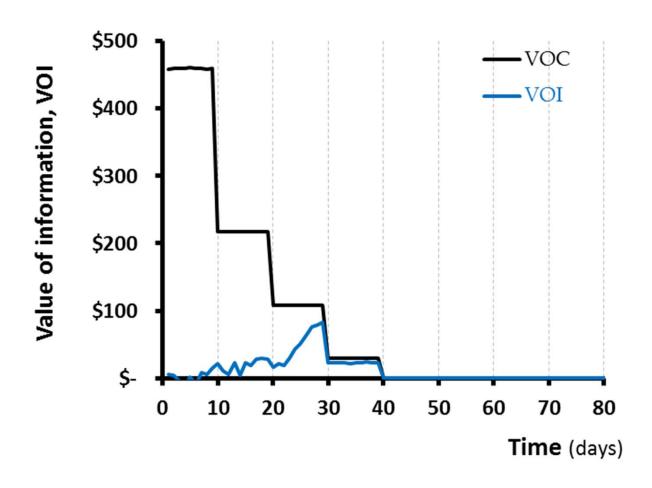
Results example 1: VOC



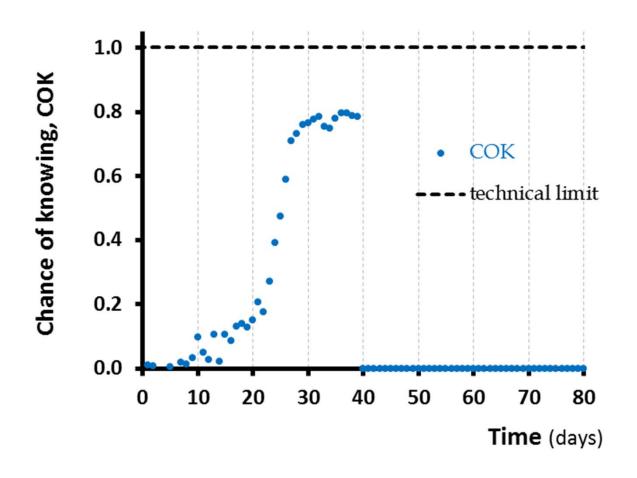
Results example 1: VOI



Results example 1: VOC and VOI

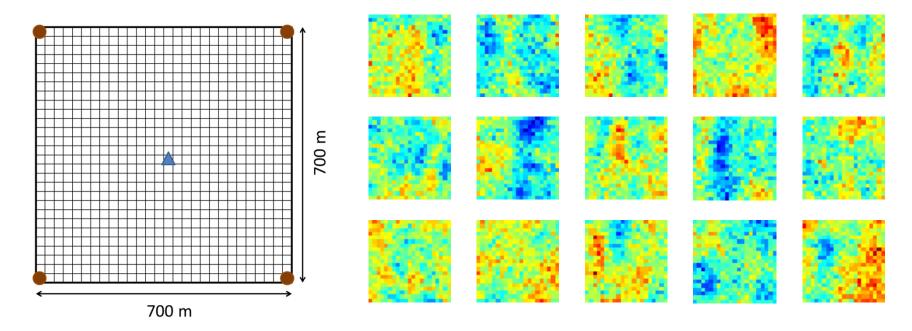


Results example 1: COK = VOI / VOC



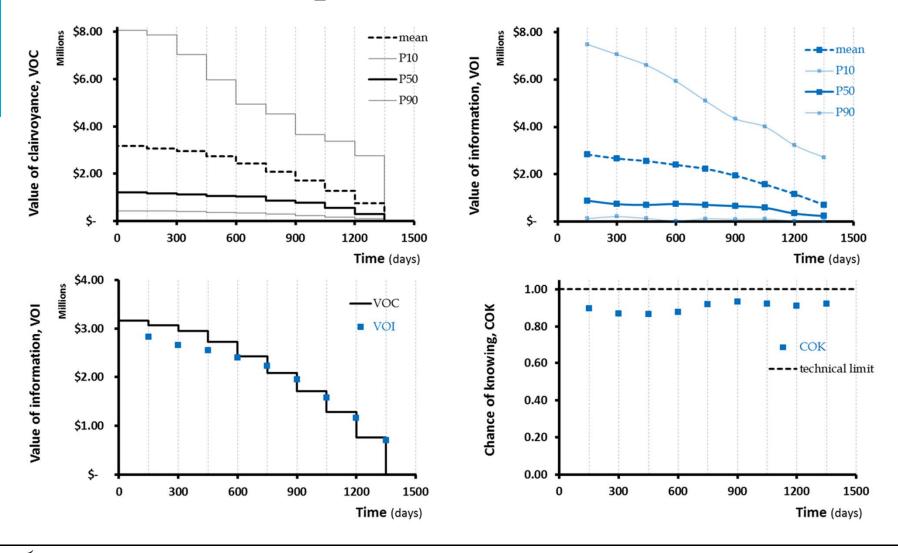
Numerical example 2

 'Inverted five spot' configuration: one central water injector, four oil producers in the corners (top view)



• 50 ensemble members (different porosity and perm. fields)

Results example 2



Conclusions

- VOI-for-CLRM method works well for examples so-far
- Computationally very intensive
- Next steps (ongoing):
 - Test method for assimilation at multiple times and for different data types
 - Test method on larger examples (using model-order reduction to achieve computational feasibility)
- Reference
 - Barros, E.G.D., Jansen, J.D. and Van den Hof, P.M.J., 2015: Value of information in closed-loop reservoir management. Accepted for publication in *Computational Geosciences*.

Acknowledgments

- This research was carried out within the context of the ISAPP Knowledge Centre. ISAPP (Integrated Systems Approach to Petroleum Production) is a joint project of TNO, Delft University of Technology, ENI, Statoil and **Petrobras**
- We used the Matlab Reservoir Simulation Toolbox (MRST), an open-source simulator developed by Sintef (Norway) which can be obtained from http://www.sintef.no/projectweb/mrst/
- The EnKF module for MRST was developed by Olwijn Leeuwenburgh (TNO) and can be obtained from http://www.isapp2.com/data-sharepoint/enkf-modulefor-mrst.

