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fluids trapped in porous rock below impermeable ‘cap rock’

Oil & gas reservoirs

gas
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water
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System equations:

Output equations:

States:                                          pressures, saturations

Parameters:                                   perms, porosities, …  

Inputs: well pressures, total rates 

Outputs: well press., phase rates

Notation
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Governing equations – simple example
• Oil and water only, no gravity, no capillary pressures

• Separate equations for p and Sw :

• t, ct and fw are functions of Sw; vt is a function of p
• Coupled and nonlinear, (near-)elliptic, (near-)hyperbolic
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source: www.slb.com

Reservoir simulation
• 3-phases (gas, oil, water) or multiple components

+ thermal effects + chemical effects + geo-mechanics + …
• Nonlinear PDEs discretized in time and space – FD/FV
• Cornerpoint grids or unstructured grids
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Reservoir simulation
• 3-phases (gas, oil, water) or multiple components

+ thermal effects + chemical effects + geomechanics + …
• Nonlinear PDEs discretized in time and space – FD/FV
• Cornerpoint grids or unstructured grids
• Large variation in parameter values: 10-15 < k < 10-11 m2

• Typical model size: 104–106 cells, 50–500 time steps
• Fully implicit (Newton iterations) – clock times: hours-days
• Typical code size: 106-107 lines (well models, PVT analysis)
• Research focused on upscaling, gridding, ‘history matching’ 

(inverse modeling), new physics, solvers, parallelization  
• Primarily used in design phase: field (re-)development

Reservoir simulation models are used in ‘batch mode’
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Closed-loop reservoir management
• Hypothesis: recovery can be significantly increased by 
changing reservoir management from a ‘batch-type’ to a 
near-continuous model-based controlled activity

• Key elements:
• Optimization under geological uncertainties
• Data assimilation for frequent updating of system models

• Inspiration:
• Systems and control theory
• Meteorology and oceanography

• A.k.a. real-time reservoir management, smart fields,
intelligent fields, integrated operations, … 
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Closed-loop reservoir management
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Robust flooding optimisation
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Robust flooding optimisation

• problem statement: subject to

• system equations:

• initial conditions:

• output equation:

• equality constraints:

• inequality constraints:

 1: 1:
11:
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10 wells, 100 time steps => 10000 optimization parameters
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Optimisation techniques
• Global versus local
• Gradient-based versus gradient-free
• Constrained versus non-constrained
• ‘Classical’ versus ‘non-classical’ (genetic algorithms, 

simulated annealing, particle swarms, etc.)
• We use ‘adjoint-based optimal control theory’

• Gradient-based – local optimum
• Computational effort independent of number of controls
• Objective function: ultimate recovery or monetary value
• Controls: injection/production rates, pressures or valve openings 
• Beautiful, but code-intrusive and requires lots of programming

Anyway, the magic isn’t in the method
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12-well example
• 3D reservoir
• High-permeability channels
• 8 injectors, rate-controlled
• 4 producers, pressure-controlled
• Production period of 10 years
• 12 wells x 10 x 12 time steps
gives 1440 optimization parameters

• Optimisation of Net Present Value (NPV) J

Van Essen et al., 2009

J = (value of oil – costs of water produced/injected) 
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Robust optimisation

• Use ensemble of geological realisations (typically 100)

• Optimise expected value over ensemble

• Single strategy, not 100!

• If necessary include risk aversion (utility function)

• Computationally intensive

Van Essen et al., 2009
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Robust optimisation results
3 control strategies applied to set of 100 realisations:
reactive control, nominal optimisation, robust optimisation

Monetary value (M$)
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Van Essen et al., 2009
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‘Computer-assisted history matching’
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‘Computer-assisted history matching’
(Data assimilation/inverse modelling)
• Uncertain parameters, not initial conditions or states
• Parameters: permeabilities, porosities, fault multipliers, …
• Data: production (oil, water, pressure), 4D seismics, …
• Very ill-posed problem: many parameters, little info 
• Variational methods – Bayesian framework:

• Ensemble Kalman filtering – sequential methods
• Reservoir-specific methods (e.g. streamlines)
• ‘Non-classical’ methods – simulated annealing, GAs, …
• Monte Carlo methods – MCMC with proxies

       1 1
0 0
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How to assess VOI in CLRM?
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• Generate initial ensemble of geological realizations

• Select one member as ‘truth’ and create synthetic data

• Generate new ensemble and perform robust optimization

• Rerun resulting strategy on ‘truth’ and compute NPV

• Perform CLRM using synthetic data  

• Rerun resulting strategy on ‘truth’ and compute  NPV

• Repeat for different  synthetic ‘truth’s (loop over ensemble)

• Compute VOI as average of  NPVs

Workflow to assess VOI in advance (1)
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Workflow to assess VOI in advance (2)

• For ensemble member i :
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Other measures and notes
• Value Of Clairvoyance (VOC): VOI under sudden and 

complete revelation of the truth (VOI ≤ VOC)
(VOC is upper bound to VOI; ‘technical limit’)

• Chance Of Knowing: COK = VOI/VOC  (0 ≤ COK ≤ 1)

• Note 1: VOI has only meaning in a decision context; here 
the decision is the life-cycle production optimisation

• Note 2: Measurements costs are not taken into account. 
Data from an individual realisation may result in reduction 
in NPV. On average, data should always lead to an 
increased or equal NPV
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Numerical example 1
• Toy model based on ‘decline curves’

• Scalar control variable: u

• Vector of uncertain parameters: a, qo,ini, qw,∞, tbt
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Oil and water production example 1
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Results example 1: VOC
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Results example 1: VOI
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Results example 1:  VOC and VOI
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Results example 1: COK = VOI / VOC
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Numerical example 2
• ‘Inverted five spot’ configuration: one central water 

injector, four oil producers in the corners (top view)

• 50 ensemble members (different porosity and perm. fields)  

•
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Results example 2
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Conclusions
• VOI-for-CLRM method works well for examples so-far

• Computationally very intensive

• Next steps (ongoing):
• Test method for assimilation at multiple times and for different 

data types
• Test method on larger examples (using model-order reduction to 

achieve computational feasibility)

• Reference
• Barros, E.G.D., Jansen, J.D. and Van den Hof, P.M.J., 2015: Value 

of information in closed-loop reservoir management. Accepted for 
publication in Computational Geosciences.
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