

Institute for Ageing

Population ageing: are we living longer healthier lives?

Carol Jagger AXA Professor of Epidemiology of Ageing

Outline

- Ageing, health and longevity
 - Health expectancy
 - Methodology
- Case study 1
 - Burden of disease on disability-free life expectancy
- Case study 2

Modelling future disability-free life expectancy

Ageing – from cells to population

- How can we make the extra years of life healthy ones?
- Assessing health alongside longevity quality as well as quantity
- Health expectancy: expected number of remaining years lived from a particular age spent in a healthy state

Many measures of health = many health expectancies!

HE methods - cross-sectional data

Research issues

- Good for trends
 - How do different
 ethnic groups
 compare on DFLE
 no life tables by
 ethnic group
- What accounts for inequalities in HE between local areas – metaregression

DFLE at birth for ethnic groups, 2001

Understanding inequalities: meta-regression

		DFLE at birth (local areas E&W)					
		1991		2001			
Women		β (SE)	р	β (SE)	р		
	Social Class IV and V (%)	-0.16 (0.03)	<0.001	-0.35 (0.03)	<0.001		
	Unemployment rate (%)	-0.53 (0.05)	< 0.001	-0.67 (0.08)	<0.001		
	Retirement migration	0.42 (0.11)	< 0.001	1.42 (0.15)	<0.001		
	Population density	0.02 (0.01)	0.005	-0.01 (0.01)	0.337		
	Non-white population (%)	0.03 (0.02)	0.063	0.05 (0.01)	<0.001		
	r ²	0.70		0.81			

Source: Wohland et al (2014) Drivers of inequality in disabilityfree expectancy at birth and age 85 across space and time in Great Britain. J Epidemiol Community Health 68(9): 826-833.

HE methods - longitudinal data

Multi-state life table

Research issues

- Explicitly estimates incidence and recovery providing better future forecasts
- Non-recoverable states (e.g. dementia)
- More than two health states (e.g. none/mild/severe disability)
- Unequal observations
- Adjustment for confounders

http://research.ncl.ac.uk/InHALE/index.html

BURDEN OF DISEASES ON DISABILITY-FREE LIFE EXPECTANCY

Disablement model

Reduction of disease and gains in DFLE

- Targets for disease usually focus on mortality but many age-related diseases are disabling and/or fatal
- Estimating the gains in DFLE through the (hypothetical) elimination of diseases is one way of capturing both
- Previous work used prevalence data and cause-deleted life tables but
 - Depends on death certificate data
 - Can't assess non-fatal diseases
 - Some diseases under-reported (dementia)
- Could estimate TLE, DFLE and DLE in those with and without baseline disease

MRC Cognitive Function and Ageing Study (MRC CFAS)

- Five centres
- stratified random sample aged 65+
- includes those in institutions
- N=13004 at baseline (1991)
- 2,6 and 10 yr follow-up
- death information from National Death Registry

Change in LE at age 65

MEN

Difference in years between those with and those without disease

Source: Jagger et al (2007) the burden of diseases on disability-free life expectancy in later life. J Gerontol 62(4) 408-414

Change in LE and DFLE at age 65

Difference in years between those with and those without disease

Source: Jagger et al (2007) the burden of diseases on disability-free life expectancy in later life. J Gerontol 62(4) 408-414

MEN

Number of diseases in 85 yr olds

Multimorbidity is the norm for very old people – contrary to single disease-based healthcare delivery

Source: Newcastle 85+ Study

MODELLING FUTURE DISABILITY-FREE LIFE EXPECTANCY

SIMPOP Projection model

- Macrosimulation model developed as part of the Modelling Ageing Population to 2030 (MAP2030) project
- Based on two-year transitions to and from disability and to death from large longitudinal ageing study (MRC CFAS)
- Produces projections of numbers of older people with disability and disability-free life expectancy (DFLE) under different health/disease scenarios
- Improves on single disease models since
 - old age is characterised by multi-morbidity
 - risk factors and treatments may affect more than one disease e.g. better control of vascular risk factors

Projections used in:

- 1. House of Lords report 'Ready for Ageing'
- 2. UK Government Commission on the Funding of Care and Support (Dilnot Commission)

Source: Jagger et al. (2009) Age and Ageing 38:319–25

Model disease scenarios

- 3 parameters can be altered to simulate time trends in each disease or their treatments and risk factors
- Prevalence of disease to reflect changes in cohorts or risk factors
- Disabling effect of disease to reflect changes in treatments or severity of disease
- Mortality from disease to reflect changes in treatments or severity of disease

Scenario 1: Population ageing alone (constant illness prevalence)

- Age-specific prevalence of diseases, incidence & recovery rates remain the same.
- Mortality rates continue to fall according to levels set by GAD principal projection

Numbers with disability by age

Constant illness prevalence

C Jagger Newcatle University Institute for Ageing

Prevalence of disability 2010-2030

Constant illness prevalence

Age group	Disability prevalence 2010	Disability prevalence 2030	Change in disability prevalence
65-69	4.2	4.3	0.1
70-74	6.4	6.7	0.3
75-79	9.1	10.0	0.9
80-84	15.6	17.4	1.8
85+	31.1	37.9	6.8

Women's LE, DFLE and DLE at age 65

Constant illness prevalence

C Jagger Newcastle University Institute for Ageing

Reductions in disabling effects of diseases*

REDUCTION	MEN			WOMEN				
in disabling effect	Increase from 2010 to 2030 in			Increase from 2010 to 2030 in				
	LE	DFLE	DLE	%DFLE/LE	LE	DFLE	DLE	%DFLE/LE
At age 65								
10%	3.2	2.2	1.0	-3.1	3.0	1.9	1.2	-3.4
20%	3.1	2.1	1.1	-2.9	3.1	2.0	1.1	-3.2
50%	3.1	3.4	-0.4	2.4	3.4	2.7	0.8	-1.4
At age 85								
10%	2.1	1.1	1.0	-4.4	2.0	1.0	1.1	-5.6
20%	2.1	1.1	1.0	-4.3	2.0	0.9	1.1	-5.3
50%	2.0	2.3	-0.3	5.9	2.3	1.6	0.8	-0.3

*Vascular diseases (stroke, CHD, dementia, diabetes, hypertension, PVD) + arthritis

Strengths and limitations

- Limitations:
 - Evidence of effect of treatments on disability is lacking therefore 'guestimates'
 - Transitions based on 1991/2 older people need new cohort but must include institutional population
 - Although incorporates multimorbidity can't estimate changes in this
 - Complex to update with new GAD projections
 - Deterministic no measures of uncertainty around estimates
- Strengths:
 - Very large cohort so can estimate low prevalence diseases
 - Includes multiple diseases
 - Can simulate effect of joint risk factors eg obesity, and interventions that affect multiple diseases eg better vascular control
 - First projections of DFLE that link back explicitly to diseases

- MODEM will include development of a microsimulation model MicSIMPOP to model:
 - the health and associated care needs of the English population from 2008 for the coming decades;
 - the impact of interventions for risk factor reduction, disease prevention and treatments that slow down progression to disease and disability.
- Builds on SIMPOP and a similar Australian microsimulation model DynoptaSim
- Outputs:
 - Numbers with disability x age x gender x dementia +/- other diseases
 - Years lived with different levels of disability/care needs to explore compression of morbidity
- Will provide distribution of outcomes (disability, DFLE) and therefore measures of uncertainty

http://www.modem-dementia.org.uk/

Institute for Ageing

Acknowledgements

InHALE, MRC CFAS, MAP2030 and Newcastle 85+ teams and study participants

The Dunhill Medical Trust

