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What is Target Tracking?
Target tracking algorithms are methods for determining the
positions and velocities of moving objects.
These are fundamental for applications in

• Aerospace defence
• Maritime surveillance
• Space situational awareness

Figure : Tracking ships in Rotterdam harbour (courtesy of TNO).
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Bayes Filtering/ single-object tracking

Bayes filter

pk(xk | z1:k)
prediction−−−−−−→ pk+1|k(xk+1|k | z1:k)

data-update−−−−−−−−→ pk+1(xk+1 | z1:k+1)

Kalman filter (Swerling / Stratonovich/ Kalman, late 1950s)

N(xk ;mk ,Pk)
prediction−−−−−−→ N(xk+1|k ;mk+1|k ,Pk+1|k)

data-update−−−−−−−−→ N(xk+1;mk+1,Pk+1)

Particle filter (Handschin & Mayne, Imperial 1966/ N. Gordon, Imperial 1993)
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Bayes Filtering: Prediction

Prediction pk+1|k(xk+1 | z1:k) =∫
fk+1|k(xk+1 | xk)︸ ︷︷ ︸

↓

pk(xk | z1:k)dxk

Markov transition density



Bayes Filtering: Data Update

Update pk+1(xk+1 | z1:k+1) =

gk+1(zk+1 | xk+1)pk+1|k(xk+1 | z1:k)∫
gk+1(zk+1 | xk+1)︸ ︷︷ ︸

↓

pk+1|k(xk+1 | z1:k+1)dxk+1

observation likelihood



Multi-Target Tracking

The objective in multi-target tracking is to
• Jointly estimate both the number of targets and their states.
• Applying single-target methods needs correct associations.
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Bayesian Multi-Object Filtering

pk(Xk | Z1:k)
prediction−−−−−−→ pk+1|k(Xk+1|k | Z1:k)

data-update−−−−−−−−→ pk+1(Xk+1 | Z1:k+1)



Spatial Point Patterns

A spatial point pattern gives the locations of a set of objects
Y = {y1, . . . ,yn} in some region of the space
e.g. yi ∈ Y , where i = 1, . . . ,n and Y ⊆ Rny

For example:

2-dimensional positions of objects in an image from a
sensor (i.e. observation space),

3-dimensional positions and velocities of objects in
some real-world environment (i.e. state space).

rpoint(50)
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Point Process Representation
A spatial point process is therefore characterised with the following

Table : Point Process Representation

Number of objects Cardinality probability Joint spatial density

0 ρ(0) -
1 ρ(1) p1(x1)
2 ρ(2) p2(x1,x2)
3 ρ(3) p3(x1,x2,x3)
4 ρ(4) p2(x1,x2,x3,x4)
. . . . . . . . .
n ρ(n) pn(x1,x2,x3,x4, . . . ,xn)
. . . . . . . . .



Point processes

Definition (Probability generating functional - Moyal 1962)

The probability generating functional GΦ of a process Φ can be written for w ∈U (X)
as

GΦ(w) = J
(0)
Φ + ∑

n≥1

1
n!

∫
w(x1) . . .w(xn)J

(n)
Φ (x1, . . . ,xn)dnx .,

where J
(0)
Φ is the probability for the population to be empty and where dnx stands for

dx1 . . .dxn.



Point processes
Example (Probability generating functional -Moyal 1962)
Taking the kth-order variation of GΦ(w) in the directions {ξ1, . . . ,ξk}, we have,

δ
kGΦ(w ;ξ1, . . . ,ξk ) = ∑

n≥k

1
(n−k)!

∫
ξ1(x1) . . .ξk (xk )w(xk+1) . . .w(xn)J

(n)
Φ (x1, . . . ,xn)dnx .

We can recover the Janossy densities J
(n)
Φ (x1, . . . ,xn) and factorial moments

M
(n)
Φ (x1, . . . ,xn) with

J
(n)
Φ (x1, . . . ,xn) = δ

kGΦ(0;ξ1, . . . ,ξk ),

M
(n)
Φ (x1, . . . ,xn) = δ

kGΦ(1;ξ1, . . . ,ξk ).



Point Process Intensity
The intensity function of a point process is the average density of
points (expected number of points per unit area).

Intensity function ≡ Probability Hypothesis Density (PHD); notation D(x)



Point Process Intensity (Cont’d)
• The intensity may be constant across the region
(homogeneous)
• or some regions may have higher intensity than others
(inhomogeneous):

X X

(samples from: homogeneous PP - left; inhomogeneous PP - right)
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Point Process Superposition

Often we observe different (independent) point patterns in the
same region originating from different point processes (e.g.
false and true target detections).
We can model this phenomenon as the superposition of
independent point processes.

X1 X2 X3

X1 X2 X1∪X2
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Poisson point process
The Poisson point process with Poisson rate λ > 0 has the
following properties

• The expected number of objects in the region is λ .
• The locations of the points are independent and identically distributed
according to some spatial distribution s(x).
• Intensity function of a Poisson point process D(x) = λ · s(x).

rpoispp(100)

Samples from a homogeneous
Poisson point process with rate
100
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PHD filtering - Poisson-based multi-target tracker

(Loading video)

Figure : Object tracking in sonar images

The first industrial application of the PHD filter was for oil pipeline
tracking for BP (2006) in SeeByte Ltd.


output15fps0.mpg
Media File (video/mpeg)



Multi-object modelling for target detection & tracking

Figure :
http://www.nollywoodone.com/latest-
additions/9009-the-u-s-military-s-real-
time-google-street-view-airborne-spy-
camera-can-track-an-entire-city-in-1-
800mp.html

Populations of objects modelled with
point processes

Target population;
Target interactions;
Target measurements;
Missed detections;
False alarms;
Target appearing/disappearing;
...
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Multi-object Bayes filtering: prediction

The evolution of the multi-object process is specified with the composite functional

G(h) = Gk

(
Gk+1|k (h|·)

)



Multi-object Bayes filtering: update

The joint functional describing the relation between targets and measurements is
specified through the functional

G(v ,w) = Gk (vGL(w |·)) .



Higher-order statistics of point processes

Recent developments in multi-object filtering allow:

Exploitation of higher-order statistics on point processes,
notably the region-based variance in target number

.

What is going on inside B?

“There are roughly µΦ(B) targets, give
or take

√
varΦ(B), within B”.
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Sensor control using variance


variance_controller_waves.mov
Media File (video/quicktime)



Example: Cluster Processes

Cluster Processes are formed with the composition of functionals,
eg. G (ψ) = G1(G2(ψ)).rMatClust(50, 0.02, 10)



Multi-Group Multi-Object Bayes Filtering
Group-Target State Variable: X= {(c1,X1), . . . ,(cn,Xn)}

pk(Xk | Z (k))
prediction−−−−−→ pk+1|k(Xk+1 | Z (k))

data-update−−−−−−−→ pk+1(Xk+1 | Z (k+1))
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Tracking Multiple Group Targets


*multiExtObj_elliptical.mov
Media File (video/quicktime)



Camera calibration (sensor registration)


scphd_mixed_targets_mixed_models_currentmeasurements.mpg
Media File (video/mpeg)



Camera calibration (sensor registration)

Measurements from the displaced camera are conditional on the
calibration parameters.



Camera calibration (sensor registration)

Estimating
calibration
parameters via
tracking of paper
airplanes
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Camera calibration (sensor registration)


Results_170213_1642.avi
Media File (video/avi)



Simultaneous localisation and mapping (SLAM)

Estimate the motion of a vehicle
in an unknown environment,
while concurrently estimating the
configuration of the environment.

Parent process is the vehicle
location
Daughter process is map,
conditioned on vehicle
location
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Simultaneous localisation and mapping (SLAM)
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Multi-sensor fusion -maritime surveillance (CDE with BAE
Systems, DSTL)

EO/radar data fusion using PHD filter estimation.



Multi-sensor fusion -maritime surveillance (CDE with BAE
Systems, DSTL)

EO/radar data fusion using PHD filter estimation.


cde_run109_eo_radar_phds.mov
Media File (video/quicktime)



Conclusions:

Methods for multi-object estimation are essential for modern
surveillance systems.
Advances in theory enable rapid advances in practice.
Interesting applications lead to development of theory.
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