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Groundwater Flow Problem

We consider steady groundwater flow in a 2d confined aquifer
governed by

−∇ · κ∇h = f

with piezometric head h, source f and hydraulic conductivity κ.

Uncertainty in the hydraulic conductivity κ
Typical Models: log-normal prior or
multipoint prior

Measurements

Measurements h(xj) for some set of
points {xj}K

j=1 in the physical domain

Source: Muggeridge et al.
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Inverse Problem

Physical Model
G(u)→ y

u parameter vector / parameter function

G forward response operator

y result / observations

Evaluation of G expensive

Forward Problem

Find the output y for given
parameters u

→ well-posed

Inverse Problem

Find the parameters u from
(noisy) observations y

→ ill-posed
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Inverse Problem

Find the unknown data u ∈ X from noisy observations

y = G(u) + η

Deterministic optimization problem

min
u

1
2
‖y− G(u)‖2 + R(u)

‖y− G(u)‖ potential / data misfit

R regularization term
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Inverse Problem

Find the unknown data u ∈ X from noisy observations

y = G(u) + η

Deterministic optimization problem

min
u

1
2
‖y− G(u)‖2 + R(u)

Large-scale, deterministic optimization problem

No quantification of the uncertainty in the unknown u

Proper choice of the regularization term R
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Inverse Problem

Find the unknown data u ∈ X from noisy observations

y = G(u) + η

Bayesian inverse problem

u, η, y random variables / fields

Prior µ0, posterior µy

Goal of computation: moments of system quantities under the posterior w.r. to
noisy data
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Inverse Problem

Find the unknown data u ∈ X from noisy observations

y = G(u) + η

Bayesian inverse problem

Quantification of uncertainty in u and system quantities

Well-posedness of the inverse problem

Incorporation of prior knowledge on the uncertain data u

Need for efficient approximations of the posterior
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Inverse Problem

Find the unknown data u ∈ X from noisy observations

y = G(u) + η

Bayesian inverse problem

Algorithms

MCMC
I Dimension robust versions, multilevel strategies, improvements by

local approximations, ...

Approximations of the forward problem / posterior

Ad hoc methods
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Inverse Problem

Find the unknown data u ∈ X from noisy observations

y = G(u) + η

Bayesian inverse problem

Algorithms

MCMC

Approximations of the forward problem / posterior
I Structure exploiting approximations, best Gaussian approximations,

transport maps, ...

Ad hoc methods
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Bayesian Inverse Problem

Find the unknown data u ∈ X from noisy observations

y = G(u) + η

X, Y,X separable Hilbert spaces

G : X 7→ Y forward response operator, G = O ◦ G

G : X 7→ X the forward map modelling the physical process

O : X 7→ Y bounded, linear observation operator with Y = RK , K ∈ N
η ∈ Y the observational noise, η ∼ N (0,Γ)

y ∈ Y observed data

µ0 prior probability measure
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Bayesian Inverse Problem

Find the unknown data u ∈ X from noisy observations

y = G(u) + η

Bayes’ Theorem (A. M. Stuart 2010)

Assuming G ∈ C(X,Y) and µ0(X) = 1, then the posterior measure µ on
u|y is absolutely continuous w.r. to the prior on u and

µy(du) =
1
Z

exp(−Φ(u))µ0(du)

with Φ : X 7→ R, Φ(u) = 1
2 |y− G(u)|2Γ and Z =

∫
exp(−Φ(u))µ0(du).
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Bayesian Inverse Problem

Find the unknown data u ∈ X from noisy observations

y = G(u) + η

Ensemble Kalman Filter

Fully Bayesian inversion is often too expensive.

EnKF is widely used.

Currently, very little analysis of the EnKF is available.

Aim: Build analysis of properties of EnKF for fixed ensemble size.
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Bayesian Inverse Problem

Find the unknown data u ∈ X from noisy observations

y = G(u) + η

Ensemble Kalman Filter

Optimization viewpoint

Study of the properties of the EnKF as a regularization technique for minimization of
the least-squares misfit functional

Continuous time limit

Analysis of the properties of the differential equations
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EnKF for Inverse Problems (M. A. Iglesias, K. J. H. Law, A. M. Stuart 2013)

Sequence of Interpolating Measures

For N ∈ N, h := 1/N, we define a sequence of measures µn � µ0, n = 1, . . . ,N, which
evolve the prior µ0 into the posterior distribution µN = µy, by

µn+1(du) =
Zn

Zn+1
exp(−hΦ(u))µn(du)⇔ µn+1 = Lnµn

with nonlinear operator Ln corresponding to application of Bayes’ theorem and
normalisation constant Zn =

∫
exp(−nhΦ(u))µ0(du) with Φ(u) = 1

2 |y− G(u)|2Γ.

Ensemble of Interacting Particles

Initial ensemble {u(j)
0 }

J
j=1 constructed by prior knowledge, u(j) ∼ µ0 iid for J <∞.

Linearisation of Ln and approximation of µn by a J-particle Dirac
measure leads to the EnKF method.
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EnKF for Inverse Problems (M. A. Iglesias, K. J. H. Law, A. M. Stuart 2013)

Update of the EnKF for Inverse Problems

u(j)
n+1 = u(j)

n + Cup
n+1(Cpp

n+1 +
1
h

Γ)−1(y(j)
n+1 − G(u(j)

n ))

with empirical covariances

Cup
n+1 = 1

J

∑J
j=1 u(j)

n ⊗ G(u(j)
n )− un ⊗ G(un)

Cpp
n+1 = 1

J

∑J
j=1 G(u(j)

n )⊗ G(u(j)
n )− G(un)⊗ G(un),

mean un = 1
J

∑J
j=1 u(j)

n , G(un) = 1
J

∑J
j=1 G(u(j)

n )

and observations y(j)
n+1 = y + η

(j)
n+1, η

(j)
n+1 ∼ N(0, 1

h Γ).

Properties of the EnKF for Inverse Problems

The ensemble parameter estimate lies in the linear span of the initial ensemble.
This linear span property implies that the accuracy of the EnKF estimate is
bounded from below by the best approximation in span{u(1)

0 , . . . , u(J)
0 }.

In the linear case, the EnKF estimate converges in the limit J →∞ to the
solution of the regularised least-squares problem.
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Continuous Time Limit

Update of the Iterates

u(j)
n+1 = u(j)

n + h Cup
n+1

(
h Cpp

n+1 + Γ
)−1

(y† − G(u(j)
n ))

+ h
1
2 Cup

n+1

(
h Cpp

n+1 + Γ
)−1

Γ
1
2 ζ j

n+1

with ζn+1 ∼ N (0, id).

Limiting SDE

Interpreting the iterate as u(j)
n ≈ u(j)(nh) gives

du(j) = CupΓ−1(y† − G(u(j))) dt + CupΓ−
1
2 dW(j) ,

where W(1), . . . ,W(J) are pairwise independent cylindrical Wiener processes and y†

denotes the noisy observational data G(u†) + η† with η† ∼ N (0,Γ).
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Continuous Time Limit (Linear Case)

Assumption: Linear response operator G(u) = Au with A ∈ L(X,Y)

u(j)
n+1 = u(j)

n + hC(un)A∗Γ−1(y(j)
n+1 − Au(j)

n+1)

with C(un) = 1
J

∑J
j=1(u(j)

n − un)⊗ (u(j)
n − un) and un = 1

J

∑J
j=1 u(j)

n .

Noise-free Case

Limiting SDE

du(j) = C(u)A∗Γ−1A(u† + η − u(j)) dt + C(u)A∗Γ−
1
2 dW(j) ,

or equivalently,
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J

∑J
j=1 u(j)

n .

Noise-free Case

Limiting ODE

du(j) = C(u)A∗Γ−1A(u† − u(j)) dt ,

or equivalently, d
dt

u(j) = −C(u)DuΦ(u(j); y)

with potential Φ(u; y) = 1
2‖Γ
− 1

2 (y− Au)‖2 and Γ−1 = I.
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J

∑J
j=1 u(j)

n .

Noise-free Case

Limiting ODE

du(j) = C(u)A∗Γ−1A(u† − u(j)) dt ,

or equivalently,
d
dt

u(j) =
1
J

J∑
k=1

〈a(k) − a, y† − a(j)〉Γ(u(k) − u)

with a(k) = Au(k) and a = 1
J

∑J
j=1 a(j).
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Global Existence of Solutions (Linear Case)

Theorem
The following differential inequalities for the quantities d(j) = u(j) − u
and r(j) = u(j) − u† hold

1
2

d
dt
|Ad(j)|2Γ ≤ 0 ,

1
2

d
dt
|Ar(j)|2Γ ≤ 0

implying global existence of r and d.
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1
2

d
dt
|Ad(j)|2Γ ≤ 0 ,

1
2

d
dt
|Ar(j)|2Γ ≤ 0

implying global existence of r and d.

Sketch of Proof

Quantities

d(j) = u(j) − u , r(j) = u(j) − u† ,

Dlj = 〈Ad(l),Ad(j)〉Γ , Rlj = 〈Ar(l),Ar(j)〉Γ , Flj = 〈Ar(l),Ad(j)〉Γ .
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1
2

d
dt
|Ar(j)|2Γ ≤ 0

implying global existence of r and d.

Sketch of Proof

d
dt

d(j) = −1
J

J∑
k=1

Djkd(k) ,
d
dt

r(j) = −1
J

J∑
k=1

Fjkr(k) , j = 1, . . . , J

d
dt

D = −2
J

D2 ,
d
dt

R = −2
J

FF> ,
d
dt

F = −2
J

FD

Global existence of D, R and F⇒ global existence of r and d
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Ensemble Collapse (Linear Case)

Theorem
The solution of d

dt
D = −2

J
D2

with initial condition D(0) = D0 = XΛ0X∗, Λ0 = diag{λ(1)
0 , . . . , λ

(J)
0 } and

X ∈ RJ×J orthogonal, is given by

D(t) = XΛ(t)X∗ .

Λ(t) satisfies the following decoupled ODE

dλ(j)

dt
= −2

J
(λ(j))2

with solution λ(j)(t) =
(2

J t + 1
λ

(j)
0

)−1, if λ(j)
0 6= 0, otherwise λ(j)(t) = 0.
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with solution λ(j)(t) =
(2

J t + 1
λ

(j)
0

)−1, if λ(j)
0 6= 0, otherwise λ(j)(t) = 0.

The rate of convergence of D and F is algebraic with a constant growing with
larger ensemble size J.
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Numerical Experiments (Linear Case)
1-dimensional elliptic equation

−d2p
dx2 + p = u in D := (0, π) , p = 0 in ∂D ,

where

A = O ◦ L−1 with L = − d2

dx2 + id and D(L) = H2(D) ∩ H1
0(D)

O : X 7→ RK , equispaced observation points in D with spacing τON = 2−NK at
xk = k

2NK
, k = 1, . . . , 2NK − 1, ok(·) = δ(· − xk) with K = 2NK − 1.
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Numerical Experiments (Linear Case)
1-dimensional elliptic equation

−d2p
dx2 + p = u in D := (0, π) , p = 0 in ∂D .

The goal of computation is to recover the unknown data u† from observations

y = OL−1u† = Au† .
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Numerical Experiments (Linear Case)
1-dimensional elliptic equation

−d2p
dx2 + p = u in D := (0, π) , p = 0 in ∂D .

The goal of computation is to recover the unknown data u† from observations

y = OL−1u† = Au† .

Computational Setting

Noise-free case, Γ = I.

u ∼ N (0,C) with C = β(A− id)−1 and with β = 10.

Finite element method using continuous, piecewise linear ansatz functions on a uniform
mesh with meshwidth h = 2−8 (the spatial discretization leads to a discretization of u, ie.
u ∈ R28−1).

The space A = span{u(j)
0 }

J
j=1 is chosen based on the KL expansion of C = β(A− id)−1.
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Numerical Experiments (Linear Case)
Underdetermined case, K = 24 − 1, EnKF ensemble J = 2
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Figure: Quantities |d(k)|2 (above),
|Ad(k)|2Γ (below) w.r. to time t.
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Numerical Experiments (Linear Case)
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Numerical Experiments (Linear Case)
Underdetermined case, K = 24 − 1, EnKF ensemble J=128
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Numerical Experiments (Linear Case)
Underdetermined case, K = 24 − 1, EnKF ensemble J=128
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Figure: ‖D‖F, ‖F‖F, ‖R‖F w.r. to time t.
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Convergence of Residuals (Linear Case)

Theorem
Assume that y is the image of a truth u† ∈ X under A and the forward operator A is
one-to-one. Let Y‖ denote the linear span of the {Ad(j)(0)}J

j=1 and let Y⊥ denote the
orthogonal complement of Y‖ in Y and assume that the initial ensemble members are
chosen so that Y‖ has the maximal dimension min{J − 1, dim(Y)}.

Then Ar(j)(t) may be decomposed uniquely as

Ar(j)
‖ (t) + Ar(j)

⊥ (t) with Ar(j)
‖ ∈ Y‖ and Ar(j)

⊥ ∈ Y⊥.

Furthermore Ar(j)
‖ (t)→ 0 as t→∞ and Ar(j)

⊥ (t) = Ar(j)
⊥ (0) = Ar(1)

⊥ .
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Convergence of Residuals (Linear Case)

Theorem
Assume that y is the image of a truth u† ∈ X under A and the forward operator A is
one-to-one. Let Y‖ denote the linear span of the {Ad(j)(0)}J

j=1 and let Y⊥ denote the
orthogonal complement of Y‖ in Y and assume that the initial ensemble members are
chosen so that Y‖ has the maximal dimension min{J − 1, dim(Y)}.

Then Ar(j)(t) may be decomposed uniquely as

Ar(j)
‖ (t) + Ar(j)

⊥ (t) with Ar(j)
‖ ∈ Y‖ and Ar(j)

⊥ ∈ Y⊥.

Furthermore Ar(j)
‖ (t)→ 0 as t→∞ and Ar(j)

⊥ (t) = Ar(j)
⊥ (0) = Ar(1)

⊥ .

Adaptive choice of the initial ensemble to ensure convergence of the residuals.
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Numerical Experiments (Linear Case)
Underdetermined case, K = 24 − 1, J = 5
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Numerical Experiments (Linear Case)
Underdetermined case, K = 24 − 1, J = 5
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Towards the Nonlinear Case
2-dimensional elliptic equation

−div(eu∇p) = f in D := (−1, 1)2 , p = 0 in ∂D ,

where

f (x) = 100 the right hand side,
O : X 7→ RK , equispaced observation points in D with spacing τON = 2−NK at

xk = k
2NK

, k = 1, . . . , 2NK − 1, ok(·) = δ(· − xk) with K = 2NK − 1.
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Towards the Nonlinear Case
2-dimensional elliptic equation

−div(eu∇p) = f in D := (−1, 1)2 , p = 0 in ∂D .

The goal of computation is to recover the unknown data u† from observations

y = G(u†) .
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Towards the Nonlinear Case
2-dimensional elliptic equation

−div(eu∇p) = f in D := (−1, 1)2 , p = 0 in ∂D .

The goal of computation is to recover the unknown data u† from observations

y = G(u†) .

Computational Setting

Noise-free case, Γ = I.

u ∼ N (0,C) with C = β(−∆)−2 and with β = 1.

Finite element method using continuous, piecewise linear ansatz functions on a uniform
mesh with meshwidth h = 2−4 (the spatial discretization leads to a discretization of u, ie.
u ∈ R24−12

).

The space A = span{u(j)
0 }

J
j=1 is chosen based on the KL expansion of C = β(A)−1.
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Towards the Nonlinear Case
Underdetermined case, K = 49, J = 75
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Towards the Nonlinear Case
Underdetermined case, K = 49, J = 75
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Towards the Nonlinear Case
Underdetermined case, K = 49, J = 75
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Conclusions and Outlook

Deriving the continuous time limit allows to determine the
asymptotic behaviour of important quantities of the algorithm.

The continuous approach offers the possibility to improve the
performance of the approach by choosing appropriate numerical
discretisation schemes based on the properties of the solution.

This approach is not limited to the linear case and may give also
some insights for the nonlinear case.
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Conclusions and Outlook

Analysis of the SDE for the linear and nonlinear case.

Improving the performance of the algorithm by controlling the
approximation quality of the subspace spanned by the ensemble.

Analysis of EnKF variants
I Variance inflation
I Localization
I Iterative regularization
I Markov mixing

Use the EnKF as iterative solver for linear equations.

Apply the ideas to large-scale forward models using industrial
solvers.
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Long-time Behaviour (Linear Case)
In the Presence of Noise

Quantities

d(j) = u(j) − u , r(j) = u(j) − u† ,

Asymptotic Behaviour of Solutions
Applying Itô’s formula yields

E
1
J

d
J∑

j=1

|Ad(j)|2Γ =
1
J

J∑
j=1

E
(
− 2

J
|Ad(j)|4Γ

)
dt

and

E
1
J

d
J∑

j=1

|Ar(j)|2Γ =
1
J

J∑
j=1

J∑
k=1

E
(
− 2

J
F2

jk
)

dt
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Numerical Experiments (Linear Case)
Underdetermined case, K = 24 − 1, J = 5, Γ = 0.01I
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Numerical Experiments (Linear Case)
Underdetermined case, K = 24 − 1, J = 5, Γ = 0.01I
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Solving linear equations with the EnKF

We consider the one dimensional elliptic equation

−div(u∇p) = f in D := (0, π) , p = 0 in ∂D ,

with u(x) = 1 + 0.1 sin(πx) + 0.05 sin(2πx), f (x) = 1
10 x.

The goal of computation is the solution p.

Γ = I.

Finite element method using continuous, piecewise linear ansatz functions on a
uniform mesh with meshwidth h = 2−8 (the spatial discretization leads to a
discretization of p, ie. p ∈ R28−1).

The space A = span{u(j)
0 }

J
j=1 is chosen based on the eigenfunctions of the

Laplace operator, i.e. sin(jx), j = 1, . . . , J.

Variation of the cardinality of the linear space A, ie. #A = {10, 256}.
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Numerical Results
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respect to time t.
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Numerical Results
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