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Groundwater Flow Problem

We consider steady groundwater flow in a 2d confined aquifer
governed by

-V -kVh=f

with piezometric head &, source f and hydraulic conductivity .

Uncertainty in the hydraulic conductivity x

@ Typical Models: log-normal prior or
multipoint prior

Measurements

@ Measurements h(x;) for some set of v
points {x;}/, in the physical domain 27

Source: Muggeridge et al.
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Inverse Problem

Physical Model
Gu) =y J

@ u parameter vector / parameter function
@ G forward response operator

@ yresult/ observations

@ Evaluation of G expensive

Forward Problem

Find the output y for given
parameters u

— well-posed

C. Schillings (UoW) EnKF for Inverse Problems ICMS Edinburgh - 18.6.2015 4/17



Inverse Problem

Physical Model
G(u) =y J

@ u parameter vector / parameter function
@ G forward response operator

@ yresult/ observations

@ Evaluation of G expensive

Forward Problem Inverse Problem

Find the output y for given Find the parameters u from
parameters u (noisy) observations y

— well-posed — ill-posed
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Inverse Problem

Find the unknown data « € X from noisy observations

y=0(u) +n

Deterministic optimization problem

1
min S|y G(u)* + R(u)

@ ||y — G(u)|| potential / data misfit
@ Rregularization term
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Inverse Problem

Find the unknown data « € X from noisy observations

y=G(u)+n

Deterministic optimization problem

1
min 5 [|y — G| + R(u)

@ Large-scale, deterministic optimization problem
@ No quantification of the uncertainty in the unknown u

@ Proper choice of the regularization term R
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Inverse Problem

Find the unknown data « € X from noisy observations

y=G(u)+n

Bayesian inverse problem

@ u,n,yrandom variables / fields
@ Prior o, posterior

@ Goal of computation: moments of system quantities under the posterior w.r. to
noisy data
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Inverse Problem

Find the unknown data « € X from noisy observations

y=0(u) +n

Bayesian inverse problem

(Noisy) Data y

Prior '

- -[ Forward Model G J
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Inverse Problem

Find the unknown data « € X from noisy observations

y=G(u)+n

Bayesian inverse problem
Ty

/ (Noisy) Data y

Posterior '

A
|I - L Forward Model G
Quantity of
Interest
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Inverse Problem

Find the unknown data « € X from noisy observations

y=G(u)+n

Bayesian inverse problem

@ Quantification of uncertainty in u and system quantities
@ Well-posedness of the inverse problem
@ Incorporation of prior knowledge on the uncertain data u

@ Need for efficient approximations of the posterior
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Inverse Problem

Find the unknown data « € X from noisy observations

y=G(u)+n

Bayesian inverse problem

Algorithms

@ MCMC

» Dimension robust versions, multilevel strategies, improvements by
local approximations, ...

@ Approximations of the forward problem / posterior
@ Ad hoc methods
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Inverse Problem

Find the unknown data « € X from noisy observations

y=G(u)+n

Bayesian inverse problem

Algorithms

@ MCMC
@ Approximations of the forward problem / posterior

» Structure exploiting approximations, best Gaussian approximations,
transport maps, ...

@ Ad hoc methods
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Inverse Problem

Find the unknown data « € X from noisy observations

y=G(u)+n

Bayesian inverse problem

Algorithms

@ MCMC
@ Approximations of the forward problem / posterior
@ Ad hoc methods

» Ensemble Kalman filter, randomized maximum likelihood,
approximate Bayesian computation, ...
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Inverse Problem

Find the unknown data « € X from noisy observations
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@ Approximations of the forward problem / posterior
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» Ensemble Kalman filter, randomized maximum likelihood,
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Bayesian Inverse Problem

Find the unknown data « € X from noisy observations

y=G@u)+n

X, Y, X separable Hilbert spaces
G : X — Y forward response operator, G = O o G
G : X — X the forward map modelling the physical process

n € Y the observational noise, n ~ N'(0,T")

o
o
o
@ O : X — Y bounded, linear observation operator with ¥ = R, K ¢ N
o
@ y € Y observed data

o

1o prior probability measure
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Bayesian Inverse Problem

Find the unknown data « € X from noisy observations

y=G@u)+n

Bayes’ Theorem (a. M. stuart 2010)

Assuming G € C(X,Y) and uo(X) = 1, then the posterior measure 1 on
uly is absolutely continuous w.r. to the prior on u and

() = 7 exp(~(1)o(d)

with @ : X — R, ®(u) = 1|y — G(u)|3 and Z = [ exp(—®(u))po(du).
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Bayesian Inverse Problem

Find the unknown data « € X from noisy observations

y=G@u)+n

Ensemble Kalman Filter

@ Fully Bayesian inversion is often too expensive.
@ EnKF is widely used.

@ Currently, very little analysis of the EnKF is available.

Aim: Build analysis of properties of EnKF for fixed ensemble size.
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Bayesian Inverse Problem

Find the unknown data « € X from noisy observations

y=G@u)+n

Ensemble Kalman Filter
Optimization viewpoint

Study of the properties of the EnKF as a regularization technique for minimization of
the least-squares misfit functional

Continuous time limit

Analysis of the properties of the differential equations
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EnKF for Inverse Problems . a. igesias, k. J. H. Law, A. M. Stuart 2013)

Sequence of Interpolating Measures

For N € N,h:= 1/N, we define a sequence of measures i, < o, n =1,

..., N, which
evolve the prior uo into the posterior distribution uy = i, by

n

Pnt1 (du) = exp(—h®(u)) pn(dut) < pint1 = Lufin

n—+1

with nonlinear operator L, corresponding to application of Bayes’ theorem and
normalisation constant Z, = [ exp(—nh®(u))po(du) with ®(u) = 1|y — G(u)|t.
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EnKF for Inverse Problems . a. igesias, k. J. H. Law, A. M. Stuart 2013)

Sequence of Interpolating Measures

For N € N,h:= 1/N, we define a sequence of measures u, < po, n =1,...,N, which
evolve the prior uo into the posterior distribution uy = i, by

i1 (du) = exp(—h®(u))pn(du) < pni1 = Lnptn

n+1

with nonlinear operator L, corresponding to application of Bayes’ theorem and
normalisation constant Z, = [ exp(—nh®(u))po(du) with ®(u) = 1|y — G(u)|t.

Ensemble of Interacting Particles

Initial ensemble {u") _, constructed by prior knowledge, u?) ~ py iid for J < oo.
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EnKF for Inverse Problems . a. igesias, k. J. H. Law, A. M. Stuart 2013)

Sequence of Interpolating Measures

For N € N,h:= 1/N, we define a sequence of measures u, < po, n =1,...,N, which
evolve the prior uo into the posterior distribution uy = i, by
Zn

n du) =
font1 (due) Tt

exp(—h®(u)) pn(du) < pias1 = Luptn

with nonlinear operator L, corresponding to application of Bayes’ theorem and
normalisation constant Z, = [ exp(—nh®(u))po(du) with ®(u) = 1|y — G(u)|t.

Ensemble of Interacting Particles

Initial ensemble {ué’) }_, constructed by prior knowledge, u? ~ g fiid for J < oo.

Linearisation of L;, and approximation of .., by a J-particle Dirac
measure leads to the EnKF method.
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EnKF for Inverse Problems . a. igesias, k. J. H. Law, A. M. Stuart 2013)

Update of the EnKF for Inverse Problems
ugj-] =u) + Cl (Gl + %F)_](yr(tjj-l —G@u))
with empirical covariances
cry =10 ud @ 9ud) — i @ Glun)
=450, 6u) @ Gy — Glun) @ Gun),
mean@, = >, u . Gluy) = L Gu)

and observations y/) | =y +1%, 7%, ~ N(0, 1T).
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EnKF for Inverse Problems . a. igesias, k. J. H. Law, A. M. Stuart 2013)

Update of the EnKF for Inverse Problems
Wy =)+ €L ()00, — )
with empirical covariances

¢’ =1 ud @ Gud) — an ® Glun)

car, =1 zj,l Gu) @ Gu) — Gun) @ G(un),
mean i, = } fluﬁ’), Glu) =33 LG

and observations yf,’ll =y+ n,?ll, 77,521 ~ N(0,;T).

Properties of the EnKF for Inverse Problems

@ The ensemble parameter estimate lies in the linear span of the initial ensemble.

@ This linear span property implies that the accuracy of the EnKF estimate is

1.

@ In the linear case, the EnKF estimate converges in the limit / — oo to the

bounded from below by the best approximation in span{u(", ..., ul"

solution of the regularised least-squares problem.
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Continuous Time Limit
Update of the lterates
ulby = ud) +h L (h O+ T) 0T = Gud))
+h2 C i (R Gl +T) P%C{zﬂ
With Guv1 ~ N(0, id).
Limiting SDE
Interpreting the iterate as u,(]) ~ uY) (nh) gives

du = eyt — Gu¥))) dt + T2 dwl)

where W .. W) are pairwise independent cylindrical Wiener processes and y'

denotes the noisy observational data G(u') + n with n* ~ A/(0,T).
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Continuous Time Limit (Linear Case)
Assumption: Linear response operator G(u) = Au with A € L(X,Y)

uf{j_1 = u,(,i) + hC(u,,)A*F_l(yr(lj_)H —Auﬁ’}_l)

with — Clu) =1 —@)® W —@)and @ =130 uf.

Limiting SDE

du¥) = C) AT 'A(ul + 1y — u¥) dr + C(u)A* T2 dWO) |
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Continuous Time Limit (Linear Case)
Assumption: Linear response operator G(u) = Au with A € L(X,Y)

W) = uf) + hC(u)A T ), — AuY)

yn+1 rH—l)
with — Clu) =1 —@)® W —@)and @ =130 uf.

Noise-free Case

Limiting ODE

dul) = CW)A*T'A(u! + 1 — u®)dt + Cu)A' T2 dw?) |
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Continuous Time Limit (Linear Case)

Assumption: Linear response operator G(u) = Au with A € L(X,Y)

ui’}_l = ul) + hC(u,)A* T ™! (yr(lj_)H —Aui’}_l)

with — Clu) =1 —@)® W —@)and @ =130 uf.

Noise-free Case

Limiting ODE

du¥) = C()A* T Al — uV) dt,
or equivalently,

L0 = —cup,ow; y)

with potential ®(u;y) = 1|12 (y — Aw)|> and T~! =1
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Continuous Time Limit (Linear Case)
Assumption: Linear response operator G(u) = Au with A € L(X,Y)

W) = ul) + hCu)A T Y, — au?) )

with — Clu) =457 () — ) @ (w — @) and @ =15 ).

Noise-free Case

Limiting ODE

or equivalently,

with a® = Au™® and @ = 3 S
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Global Existence of Solutions (Linear Case)
Theorem

The following differential inequalities for the quantities ¢¥) = 1) —
and r0) = u) — u' hold

u

1d ; 1d ’
2 AdD 2 < — A2 <

implying global existence of r and d.
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Global Existence of Solutions (Linear Case)

Theorem

The following differential inequalities for the quantities d¥) = ul) — &
and r%) = 4 — 4t hold

1d ; 1d ’
2 AdD 2 < — A2 <

implying global existence of r and d.

Sketch of Proof

Quantities
d9 =9 g, P = ) oyt
D = (AdV, AdDYr, Ry = (ArD, ArD)p Fj = (Ar", AdV)p .
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Global Existence of Solutions (Linear Case)

Theorem

The following differential inequalities for the quantities d¥) = ul) — &
and r%) = 4 — 4t hold

1d ; 1d ’
2 AdD 2 < — A2 <

implying global existence of r and d.

Sketch of Proof

J
1 d .
5@ =52 oudV Y = Zw) =10
k=
d 2 5 d T d
—D=-2=D —R=—-FF —F=—-FD
dt J dt ’ dt

Global existence of D, R and F = global existence of r and d
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Ensemble Collapse (Linear Case)

Theorem
The solution of d )
—D = —-Zp?
dr J
with initial condition D(0) = Dy = XAoX™*, Ao = dlag{A(l) . .,)\(()J)} and
X € R’*/ orthogonal, is given by
D(t) = XA(1)X*
A(r) satisfies the following decoupled ODE
a2

— _Z(\0H2
dr J(A )

with solution \V) (1) = (27 + ﬁ)_l, it \Y) # 0, otherwise A0 (z) = 0.
0
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Ensemble Collapse (Linear Case)

Theorem
The solution of d 2,
dr J
with initial condition D(0) = Dy = XAoX™*, Ao = diag{)\(()l), e )\(()J)} and
X € R’*/ orthogonal, is given by
D(t) = XA(1)X" .
A(r) satisfies the following decoupled ODE

M — _%(AO))Z

dt J

with solution \V) (1) = (27 + ﬁ)_l, if \Y £ 0, otherwise A% (1) = 0.
0

The rate of convergence of D and F is algebraic with a constant growing with
larger ensemble size J.
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Numerical Experiments (Linear Case)

1-dimensional elliptic equation

d’p . .
2 +p=u inD:=(0,7),p=0 indD,
where
A=0oL'"withL = —& —|—1d and D(L) = H*(D) N Hy(D)
O:X— R, eqwspaced observatlon points in D with spacing 7¥ = 27 at
=g, k=1,...,2% — 1, 0(-) = 6(- — x) with K = 2" — 1.
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Numerical Experiments (Linear Case)
1-dimensional elliptic equation

d2p

—@-l—p:bt inD:=(0,7), p=0 indD.

The goal of computation is to recover the unknown data u' from observations

y = OL 'l =Aul.
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Numerical Experiments (Linear Case)
1-dimensional elliptic equation
—jZ)qu:u inD:=(0,7), p=0 indD.
The goal of computation is to recover the unknown data u' from observations
y = OL 'l =Aul.
Computational Setting

@ Noise-free case, I' = I.
@ u~ N(0,C) with C = B(A — id)~! and with 3 = 10.

@ Finite element method using continuous, piecewise linear ansatz functions on a uniform
mesh with meshwidth # = 2~8 (the spatial discretization leads to a discretization of u, ie.

u e ]stfl).
@ The space A = span{u(()j) }]1:1 is chosen based on the KL expansion of C = B(A — id) ™.
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Numerical Experiments (Linear Case)

Underdetermined case, K = 24 — 1, EnKF ensemble J = 2

10° 10° r : T
10 - 1 10' H B 3
107 "
107
10 10° 10 10 1‘05 ‘0710 10 10 10 10
t t
=]
10°F 10
10 10° 10 10 1‘0“ 10f 10 10 10 10
t t
Figure: Quantities | |* (above), Figure: Quantities |r*)|? (above),
|Ad®|% (below) w.r. to time z. |Ar® |2 (below) w.r. to time 1.
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Numerical Experiments (Linear Case)

Underdetermined case, K = 24 — 1, EnKF ensemble J = 2

C. Schillings (UoW)

— IR
~--ID|
-e-|F]|

F

Figure: ||D||r, ||F||F, ||R||F w.r. to time z.
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Numerical Experiments (Linear Case)

Underdetermined case, K = 24 — 1, EnKF ensemble J=128

10° 10° 10 10° 10° 10° 10° 10 10° 10°

Figure: Quantities | |* (above), Figure: Quantities |r*)|? (above),
|Ad®|% (below) w.r. to time z. |Ar® |2 (below) w.r. to time 1.
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Numerical Experiments (Linear Case)

Underdetermined case, K = 24 — 1, EnKF ensemble J=128

C. Schillings (UoW)

10° 10° 10 10°
t

10°

Figure: ||D||r, ||F||F, ||R||F w.r. to time z.
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Convergence of Residuals (Linear Case)

Theorem

Assume that y is the image of a truth «' € X under A and the forward operator A is
one-to-one. Let ¥/ denote the linear span of the {44%)(0)},_, and let Y* denote the
orthogonal complement of Yl in ¥ and assume that the initial ensemble members are
chosen so that Y/ has the maximal dimension min{J — 1, dim(¥)}.

Then Ar¥) (1) may be decomposed uniquely as

A1)+ 4r9(e) with 4r € ¥ and A/ € v+,

Furthermore AV () =0 ast— oo and A (1) = Ar90) = AV,
I 1 1 1
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Convergence of Residuals (Linear Case)

Theorem

Assume that y is the image of a truth «' € X under A and the forward operator A is
one-to-one. Let ¥/ denote the linear span of the {44%)(0)},_, and let Y* denote the
orthogonal complement of Yl in ¥ and assume that the initial ensemble members are
chosen so that Y! has the maximal dimension min{J — 1,dim(Y)}.

Then ArU)(t) may be decomposed uniquely as
A0+ ar9() with 4r? € ¥l and 4 € v+,

Furthermore Arﬁi)(t) —0ast— oo and ArY) (1) = ArY) 0) = Ar(f).

Adaptive choice of the initial ensemble to ensure convergence of the residuals.
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Numerical Experiments (Linear Case)
Underdetermined case, K =24 —-1,J =5

102 102
= = ;
0 ——1d¥|2 with cleverly chosen initial ensemble | | I ——Ir"I7 with clevery chosen initial ensemble| |
wga
102
. \\
0 2 ‘A 6 ‘B 10t 0 2 4 6 ‘S
10 10° 10° 10 10 10 10° 10° 10 10°
t t
—fAdNK. —‘\Ark\‘.
——|Ad"|? with cleverly chosen initial ensemble —— |Ar"|? with cleverly chosen nitial ensemble
10° 10 T ———
1010 10710
10° 10% 10 108 108 10° 10% 10* 108 10°
t t
Figure: Quantities |[4¥'|* (above), Figure: Quantities |*)|* (above),
|Ad™ % (below) w.r. to time z. |Ar 9|2 (below) w.r. to time «.
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Numerical Experiments (Linear Case)

Underdetermined case, K =24 —-1,J =5

3
10°F — Al 1
| —— A} 2 with cleverly chosen initial ensemble
10 “‘I:gEEEEEEEEEEEEEEEEEg
10710 { 4
10° 10? 10* 10° 10°
t
T
3
100 —IAnI;
——|Ar5|? with cleverly chosen initial ensemble
10
107 . . . .
10° 10% 10* 10° 108

t

Figure: Quantities \Arﬁ’)|2r, 1AFY 2. with respect to time 1.
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Towards the Nonlinear Case
2-dimensional elliptic equation
—div(e"Vp) =f inD:=(=1,1)*, p=0 indD,
where

f(x) = 100 the right hand side,
O : X — R¥, equispaced observation points in D with spacing 7% = 27 at

xe= o k=1,...,2% — 1, 01(-) = §(- — xz) with K = 2" — 1.

2Nk
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Towards the Nonlinear Case

2-dimensional elliptic equation
—div(e"Vp) =f inD:=(=1,1)>, p=0 indD.
The goal of computation is to recover the unknown data u' from observations

y = G@').
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Towards the Nonlinear Case

2-dimensional elliptic equation
—div(e"Vp) =f inD:=(-1,1)>, p=0 indD.
The goal of computation is to recover the unknown data u' from observations
y = Gh).

Computational Setting

@ Noise-free case, I' = I.
@ u~ N(0,C) with C = B(—A)~2 and with 8 = 1.

@ Finite element method using continuous, piecewise linear ansatz functions on a uniform
mesh with meshwidth » = 2~ (the spatial discretization leads to a discretization of u, ie.

2
ue R ).

@ The space A = span{ug) ]!:1 is chosen based on the KL expansion of C = 3(4)~!.
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Towards the Nonlinear Case
Underdetermined case, K =49, J =75

‘2
0

; ; ; ;
10° 10° 10* 10° 10° 10° 10° 10 10° 10°

Figure: Quantities |43 (above), Figure: Quantities |¥)|3 (above),
Gu®) — 1 3 G|t (below) wr. to  [G(u®) = Guh)[f (below) w.r. to time 7.
time 1.
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Towards the Nonlinear Case
Underdetermined case, K =49, J =75

— IRl

Figure: ||D||r, ||F|lF, ||R||F w.r. to time .
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Towards the Nonlinear Case
Underdetermined case, K =49, J =75

(73

f;i A e

‘ Solution truth
o) © Measurements|
o

Figure: Comparison of the truth and the ensemble members w.r. to x over time (left)
and comparison of the forward solution G(1") and the estimated solutions of the
forward problem (right).
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fixedunderMovietruth2.avi
Media File (video/avi)


fixedunderMovieytruth2.avi
Media File (video/avi)


Conclusions and Outlook

@ Deriving the continuous time limit allows to determine the
asymptotic behaviour of important quantities of the algorithm.

@ The continuous approach offers the possibility to improve the
performance of the approach by choosing appropriate numerical
discretisation schemes based on the properties of the solution.

@ This approach is not limited to the linear case and may give also
some insights for the nonlinear case.
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Conclusions and Outlook

@ Analysis of the SDE for the linear and nonlinear case.

@ Improving the performance of the algorithm by controlling the
approximation quality of the subspace spanned by the ensemble.

@ Analysis of EnKF variants
Variance inflation
Localization

Iterative regularization
Markov mixing

vV vy VvYy

@ Use the EnKF as iterative solver for linear equations.

@ Apply the ideas to large-scale forward models using industrial
solvers.
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Long-time Behaviour (Linear Case)
In the Presence of Noise

Quantities
d(/):u(])_ﬁ’ r(i):u(i)_uT’

Asymptotic Behaviour of Solutions
Applying It6’s formula yields
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Numerical Experiments (Linear Case)
Underdetermined case, K =2*—-1,J =5,1 = 0.01/

10!

t

Figure: Quantities |dc[3, |Ad|} with Figure: Quantities |/*|3, |Ar*|} with
respect to time z. respect to time r.
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Numerical Experiments (Linear Case)
Underdetermined case, K =24 —1,J =5,1 = 0.01/

—E( 5IdP)

|

—E(1 TIAd)

T

Figure: Mean of the quantities |3,
|Ad, |3 with respect to time 7, 25
realisations of the noise in the
iterations and of the noise in the
observations.

—E(NE Ws)

—E(1W Zly-Ad)

Figure: Mean of the quantities |r*]3,

|AF* |} with respect to time ¢, 25
realisations of the noise in the
iterations and of the noise in the
observations.
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Solving linear equations with the EnKF

We consider the one dimensional elliptic equation
—div(uVp)=f inD:=(0,7), p=0 indD,

with u(x) = 1 + 0.1 sin(mx) 4 0.05 sin(2mx), f(x) = 5.

The goal of computation is the solution p.

@ I'=1.

@ Finite element method using continuous, piecewise linear ansatz functions on a
uniform mesh with meshwidth » = 2% (the spatial discretization leads to a

discretization of p, ie. p € R 7).

@ The space A = span{ug) }_, is chosen based on the eigenfunctions of the
Laplace operator, i.e. sin(jx), j=1,...,J.

@ Variation of the cardinality of the linear space A, ie. #.4 = {10,256}.

C. Schillings (UoW) EnKF for Inverse Problems ICMS Edinburgh - 18.6.2015 20/17



Numerical Results

o
—IdG =10 |
— I, J=256

—|Ad“2, J=10
— |Ad¥2, J=256 ||

Figure: Quantities |dx|?, |Ad|t with
respect to time ¢.
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2
107+
10 i i i i i i
10° 10' 10° 10° 10 10° 10° 10 10°

Figure: Quantities |#|?, |A7*|} with
respect to time 1.
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Numerical Results

o 2
10 f—_— = H
IA%(2, J=10
2
— A, J=256
112
10°
o
1o f f f f . . f
10° 10 10° 10° 10 10° 10° 10 10°
t
2
10° b —_ = H
o A2, J=10
> H
|ArS[2, J=256
10° B
10 f f f f . . f
10° 10 10° 10° 10' 10° 10° 10’ 10°

Figure: Quantities |Ar|(|’)|"’r, A7 2 with respect to time 1.
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Numerical Results

— IRl
---ID|
- -[Fl, =10 |]
— IRl
H--oi
|- -IFl, J=256

Figure: Quantities ||D||r, ||F||r, ||R||r With respect to time 1.
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