The Role of Inverse Problems and Optimisation in Uncertainty Quantification
ICMS, Edinburgh
17th — 18t June 2015
A workshop sponsored by:

The Turing Gateway to Mathematics, The Knowledge Transfer Network,
The International Centre for Mathematical Sciences, and the Smith Institute

Optimisation in Uncertainty
Quantification and Management

Chris L. Farmer
Mathematical Institute, Oxford

farmer@maths.ox.ac.uk

UNIVERSITY OF

OXFORD

Mathematical
Institute



UNIVERSITY OF

OXFORD

Acknowledgements: Mathematical
Institute

This presentation is based on work funded by:

* The Oxford-Martin School Programme on Resource Stewardship.

Thanks are due to colleagues, in Oxford and elsewhere,
for their comments and criticism.

2/17



Topics for discussion

UNIVERSITY OF

OXFORD

Uncertainty Quantification
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Uncertainty Management
* The stochastic control problem

Model predictive control
 Computing policies
* Discussion
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UQ: The Forward model

State vector: @ "=(@,,@;,...,Q) attimet" =nt
'Forward dynamical model' G.(¢",¢"",c") =0
where the ¢" = a vector of controls, supposed known for UQ
Suppose 3 F such that ¢" = F(¢"",c")
and F~' such that ¢@"" = F'(¢",c") (inverse function)

Note that G,(¢",¢"",c") = @' —@"  for parameters
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UQ: The Observation model

Simulation of the observing apparatus:

s, =h(¢")+0,5  observe at discrete times
and &' ~N(0,1) iid

LetS" =(s",s',s%,....8")
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UQ: The Observation model

JT(S”I(p”)=zexp(—E I (q&,’j—sf)z)

20,

Zz= a generic normalisation constant
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UQ: The main problems

The 'smoothing problem!'
Given 7(¢°) compute m(gp’1S")
The 'filtering problem’

Given 7(¢"’) compute m(@" 1S"Y)

The problems involve computing a posterior pdf given a prior, a model and observations.
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UQ: Formulation of the smoothing problem
Suppose that ¢" = F(¢"™,c") implies ¢" = F"(¢’,c"")

for given controls with F(¢") =¢"

0 N L 1 n n\2 0
(g, ") =z [expl= Y ——(h (¢ =51 7(@")
m=0 k k

Gaussian approximation

1

J(@")==In(x(¢°, SV ) = Y —(h(¢")-5;)* ~In(w(g"))
T 20,
i i 0 See publications by:
¢ =argminJ(¢") O. Ghattas & T. Bui-Thanh

UT Austin
0
09,09 |

L. C = L' for the covariance

Uy
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UQ: Formulation of filtering (in principle)

The 'particle filter'
R
m(@’)=Y a’d(¢’ -¢)) where @) ~m,(¢") and a’ =%

r=1

Suppose (9" 15"") = Y a!"8(¢"" ~ ™)

1 n-1 1 n n\2 n n
(g5 18 = Y ar expl= = U (@") = 510" - @)

k k

where ¢ = F(¢"",c")

(" |S”)=Eaf5(fp”—¢f)
an

where a; = Erv and a’ = af‘l exp[—z 2%‘2(}11c (@;)-s, )]
k

n
aru k
7

See Evensen 2009
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UQ: Formulation of filtering (practical approach)

The 'ensemble variational filter'

Let 7,(¢1.L) = zexpl—— (¢~ 7)' Lig-P)

R
w(@")=Y am (" 1¢,RL)  where @) ~m,(@"),
r=1
o1
a =— and L) = inverse prior cov.

Supposeﬂ(qﬁnllsn 1) Ea T ((pnllcpnl RLn 1)

LetJf((p”)=EF(hk((p”)—sZ)zh—(F_l(@”c) @) LT (F (" e -9 )

k Gk

R R
@) =argminJ/(¢"), @ =Y ap!, o= a (@ -¢l)
-

r=1 r=1

5, ("
L' = (A A, +25 where A, =5 (@ ¢

Main heuristic, clf 2014
a; 0@,
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UM: Formulation of stochastic control
Suppose: G.(¢",¢"",c") =0
s, =h(p")+075,  where & ~N(0,1)

For given ¢"",3 F™ st. ¢"=F" (¢",c"")
Suppose ¢’ and o are the initial settings of the controls

Let 7" = Y1y, @) +7.(c"c" ) +7,(0",0" )]

K

o0
n

eg.y, =k, (c"=c"") and y_ = +K, (0" - o)’

for some positive constants k,,k,, and K
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UM: The stochastic control problem

~n

Seek control policy functions u",0" :

Cn _ En(Sn—l), O,n _ (’5,n(Sn—1)

Such that
{¢",6"}", = argmin 7"
{&",6"}
where
7" =
D r,@)+r.(c" "D +y, (0", 0" D@ m(E"dg ds™
n=1,N

For a discussion of policy functions see:
W.B. Powell, ‘Clearing the jungle of stochastic optimization’

http://castlelab.princeton.edu
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UM: Stochastic model predictive control
MPC: At each time t"
Suppose that for times 1: (n—1)

l:n—-1

The policy values o', ™" have been applied

Solve the filtering problem for (¢"" | S"") and sample for
qp::z—l - .77:((;0”_1 |Sn—1)

Then compute new policy values u™" such that

" = arg min i {E (af‘ly(p (" )) +y . (c",c™ )}

r

with ¢ understood as functions of ¢~ and the controls ¢"™*

Apply the controls ¢” only at time n (i.e. discard the later controls)

and make the observation of s”.
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UM: Beyond model predictive control
Problem A:

Within MPC with constant control parameters, how do we find

an optimal observation variance, o"?

Problem B: Compute linear control functions in a similar way

-- using an ensemble to estimate the mean cost

~ n

n n n
C =Cy+¢, .8

o"=0y+0/.5"

and so on.
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Discussion

* Smoothing and filtering problems can be solved fairly well using Bayesian formulations
and optimisation methods using adjoint techniques.

e Control problems are very challenging. We can formulate them but to go beyond
MPC for large-scale engineering or geoscience problems is an outstanding challenge
to us all.

We could also consider the topics of:

How to keep all matrices sparse and avoid any matrix inversions (e.g. clf 2007)
Stochastic dynamical systems

Robust control

Forecast evaluation

Model sensitivity

Model criticism and comparison

Multi-objective optimisation (Pareto fronts)

Adaptive management
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UM: Extra slides

Analytical solution of a one-step stochastic control problem for
the logistic map.

This is equivalent to a decision problem where we need to decide
what measurement to make before making it, and then observing

and then setting the control on the basis of the feedback from the
measurement.
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Example: One-step stochastic control of the logistic map

Model: x =1—ux02, x, ~ N(q,A)
p

Choose u, changing it from u_,with cost = > (u(v,s)-u_,)’

to land near z with an error cost = g(x - z)’

. o
Observations of x, cost —-; youneed to choose v too.

2v°
le. s=x,+vg, & ~N(0,1)

a
total cost = — + b (u—u_) + Z(x-z)?
v 2 2
But as we do not know x, very well we do not know x.

So what should we do?
UM: 2/7



Example: One-step stochastic control of the logistic map

Taking variations w.r.t.u gives

I+ edn)| o

de s0
f[/)’(u(v, $)—u_)ou—-y(l-ux,” —z)ux, ]N(S —x,,V)N(x, —q, A’ )dx,ds
So

f[ﬂ(M(V,S)—u_l)— }/(l—uxoz _Z)xoz]N(S _xoavz)N(xo _qa/lz)dxo =(

and
[/J’u_1 +y(1-2) x02 ]N(S —x,,V)N(x, —q,A")dx,
1B+ 70+x,") [N(s =20,V N, - 0, ),

u(v,s) =f
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Example: One-step stochastic control of the logistic map

x=1-ux,’”, x,~N(q,*) s=x,+vE, &~ N(0,])

(X, 8,X,) = 5(x—1+ux02)N(S - x,, V)N (x, —q, 1)

a
JW)=——+
) 2y°

é(u(v,s) ~u_,)’ +Z(x—z)2 S(x —1+ux,” )N(s - x,,v*)N(x, — g, A )dx dxds
f 2 2

SO

o
JW)=—+
) 242

é(u(v,s) —u_l)2 + Z(1 —ux02 —2)° | N(s —xo,vz)N(xO - q,ﬂz)dxods
I3 >

Find a control policy u(v,s)and a measurement accuracy v.

J*(v) =inf J, J*=inf J*(v) UM: 4/7



Example: One-step stochastic control of the logistic map

Using the calculus of variations one can show that :

pu_, +y(l- Z)(I(2 + az)

u(v,s) =
(v:5) B+y(a*+6a’kx” +3k%)
2 2
where a = S/12+q\2/
A +v
and x = AV
\/2.2+v2

Remember: N(s - x,,v?) ~ likelihood
N(x,-q,A*) ~ prior
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Control policy for the logistic map

A=0.5 ~priorstandard deviation
qg=0.6 ~prior mean
z=0.1

a=1.0

B=10""

y =10°

UM: 6/7



Cost-to-go for the logistic map by numerical integration

J sk (V) 5500

5000
4500
4000
3500
3000
2500

2000

1500

1000

500

0.3 09 1

(v*,J*)1s at the mmimum of the curve
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UQ: Extra slides

Application of the ensemble variational filter to the filtering problem
on the Lorenz-96 equations
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UQ: Numerical example: Lorenz 96

(0):43(0)23D)
du_ . Mathematical
—L =0 :'reality' and forward model Institute

dt
% =V, =V v, —vi(k+e“)+ W, :'reality' and forward model

4
@ =(u,v)
Reality: See Yang & DelSole

: : - 2009, 2010 for

u,=05+ 0.2 sin(03i) + 002 0S5 -Z"); W. = 10.0 related work
v,(0)=10 + 28", ¢',¢" ~N(,1) iid

No parameters are observed. 1000 equilibration steps before observing
Observe variables with o =0.01

Initialised with random sampling. Window: w(R) = R
Cor. lengths. 4.0 (parms) & 0.1 (vars) Init. var 1.0 parm and 10.0 var

Implicit Euler, time step = 0.01 between obs and for dynamics

Yang, X., and DelSole, T. 2009 Using the ensemble Kalman Filter to estimate multiplicative model parameters. Tellus, 61, pp 601-609.
DelSole, T. and Yang, X. 2010 State and parameter estimation in stochastic dynamical models. Physica D, 239, pp 1781-1788. UQ 2/10



‘Validation’: R = 8. Observe all variables

Parameters at time 1

20 25

Variables at time 1

30

35

40

30

35

40
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Parameters at time 10

Variables at time 10
8 T T

0.4

-0.4 1 1 1 1 1 1
10 15 20 25 30 35 40
50 Variables at time 50
10 T T
5 i
0 i
-5 1 1 1 1 1 1
10 15 20 25 30 35 40

0.4 T T T

Variables at time 100
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R = 8. Observe each 7t" variable

(0),43(0)23D)

Mathematical

Parameters at time 1 Parameters at time 200 Institute
4 T T 15 T T T
2 T
O—\/\\' /F\\/,— //\/\\ /—‘\/‘\/\/\ \_//\\/\
ok
_4 L L L L L L L _1 L L L L L L L
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Variables at time 1 Variables at time 200
20 T T

-10- T
-20 | | | | | | | -15 | | | | | | |

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40

; Parameters at time 600 Parameters at time 2000

-1.5 L L L L L L L 1 1 1 1 I I I
5 10 15 20 25 30 35 40 -1 10 15 20 25 30 35 40

Variables at time 600 Variables at time 2000
15 T T T 10 T T T

_5 I I I I I I I
5 10 15 20 25 30 35
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R = 8. Observe each 7th variable

(0),43(0)23D)
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Distance of parameters from the truth

o 500 1000 1500 2000

14 Distance of variables from the truth

12 —

10 —

o 500 1000 1500 2000

Root mean square distance of ensemble members (green) and the mean (blue)

from the truth plotted against time
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The ensemble variational filter
The value of Implicit Euler time discretisation

do,
. L= f(g.1)
time step T dt

@" =" +Tf(¢")

One finds: F_1(§0n) =@ —-T1f(@")

Also: A;=0,-T LACE,
0@
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The ensemble variational filter
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Heuristic for updating the weights

dn a - |Ln -1 |1/2
r r |L |1/2
1 a’

a, =¢,—+(l-¢,)x=

Y

r
r

— - exp(=J,(¢,))

Stordal et al 2011
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Variational Smoothing Filter V810

Updating the precision matrices

2 rn n

1o = @)
. ij.r GQOZ-naCD’? n AIIof.thecomponent
/gy matrices are sparse

n n n a n
= plél] + E(Azm erli rAk] ro f (QD ) mlir(qpkr Tﬁc(qﬂr ) QO ))

mk awi,ra(p
|Ln—1 |1/2
2. Approximate Ii” e ~ 1
- w(R 0. . Main heuristic
3. Reset L, =(A LA+ L every time step
€+ var,

where w(R) 1s a slowly increasing function of R and

var, = empirical, ensemble variance of the ensemble {¢@ }



Choosing L° via local random fields — for sparsity

clf 2007
1 1

OW) = [y +b(Vep)' +e(Viy)ldo = — [lyLyldo

Helmholtz Green's
where L=a—-bV’+cV’V’ functions

0oy
(@) = zexp(-Q(¢ - §)) L

8= 7= 1D

g(x-y) ={pxX)p()) Theorem: Lg(x—-y)=0d(x-y)

After discretisation L; is sparse and C = (L)' is the covariance matrix
L=a-bV® - the 'Helmholtz precision matrix' - is particularly convenient
and was used in the numerical experiments on Lorenz-96

Set L’ =wL for some 'sharpness control' w that increases with R
uQ: 9/10



‘Validation’: Observe all variables

(0),43(0)23D)
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Os, ' ' T ' ' oY
of s, " :
20} 2. |
30 .:E:. _
40 240 "8 4
50 .
60 .
70 ;ec -
80 oo | | | . | | |
0 10 20 30 40 50 60 70 80
nz = 960

Approximate sparse precision matrix
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