The Role of Inverse Problems and Optimisation in Uncertainty Quantification ICMS, Edinburgh

17th – 18th June 2015

A workshop sponsored by:

The Turing Gateway to Mathematics, The Knowledge Transfer Network,
The International Centre for Mathematical Sciences, and the Smith Institute

Optimisation in Uncertainty Quantification and Management

Chris L. Farmer Mathematical Institute, Oxford

farmer@maths.ox.ac.uk

Acknowledgements:

This presentation is based on work funded by:

• The Oxford-Martin School Programme on Resource Stewardship.

Thanks are due to colleagues, in Oxford and elsewhere, for their comments and criticism.

Topics for discussion

Uncertainty Quantification

Inverse problems – simultaneous formulation

sequential assimilation

Uncertainty Management

- The stochastic control problem
- Model predictive control
- Computing policies
- Discussion
- References

UQ: The Forward model

State vector:
$$\varphi^n = (\varphi_1^n, \varphi_2^n, ..., \varphi_K^n)$$
 at time $t^n = n\tau$

'Forward dynamical model'
$$G_i(\varphi^n, \varphi^{n-1}, c^n) = 0$$

where the c^n = a vector of controls, supposed known for UQ

Suppose
$$\exists F \text{ such that } \varphi^n = F(\varphi^{n-1}, c^n)$$

and
$$F^{-1}$$
 such that $\varphi^{n-1} = F^{-1}(\varphi^n, c^n)$ (inverse function)

Note that
$$G_i(\varphi^n, \varphi^{n-1}, c^n) = \varphi_i^n - \varphi_i^{n-1}$$
 for parameters

UQ: The Observation model

Simulation of the observing apparatus:

$$s_k^n = h_k(\varphi^n) + \sigma_k \xi_k^n$$

 $s_k^n = h_k(\varphi^n) + \sigma_k \xi_k^n$ observe at discrete times

and
$$\xi_k^n \sim N(0,1)$$
 iid

Let
$$S^n = (s^0, s^1, s^2, ..., s^n)$$

UQ: The Observation model

$$\pi(s^n \mid \varphi^n) = z \exp\left(-\sum_k \frac{1}{2\sigma_k^2} (\varphi_k^n - s_k^n)^2\right)$$

z = a generic normalisation constant

UQ: The main problems

The 'smoothing problem'

Given $\pi(\varphi^0)$ compute $\pi(\varphi^0 \mid S^N)$

The 'filtering problem'

Given $\pi(\varphi^0)$ compute $\pi(\varphi^N \mid S^N)$

The problems involve computing a posterior pdf given a prior, a model and observations.

UQ: Formulation of the smoothing problem

Suppose that $\varphi^n = F(\varphi^{n-1}, c^n)$ implies $\varphi^n = F^{(n)}(\varphi^0, c^{1:n})$ for given controls with $F^{(0)}(\varphi^0) = \varphi^0$

$$\pi(\varphi^{0}, S^{N}) = z \prod_{m=0}^{N} \exp\left[-\sum_{k} \frac{1}{2\sigma_{k}^{2}} (h_{k}(\varphi^{n}) - s_{k}^{n})^{2}\right] \pi(\varphi^{0})$$

Gaussian approximation

$$J(\varphi^{0}) = -\ln(\pi(\varphi^{0}, S^{N})) = \sum_{k} \frac{1}{2\sigma_{k}^{2}} (h_{k}(\varphi^{n}) - s_{k}^{n})^{2} - \ln(\pi(\varphi^{0}))$$

$$\widetilde{\varphi}^0 = \arg\min J(\varphi^0)$$

See publications by:
O. Ghattas & T. Bui-Thanh
UT Austin

$$L_{ij} = \frac{\partial^2 J}{\partial \varphi_i^0 \partial \varphi_j^0} \bigg|_{\bar{\varphi}^0}$$
 $C = L^{-1}$ for the covariance

UQ: Formulation of filtering (in principle)

The 'particle filter'

$$\pi(\varphi^0) = \sum_{r=1}^R a_r^o \delta(\varphi^0 - \varphi_r^0) \quad \text{where } \varphi_r^0 \sim \pi_0(\varphi^0) \text{ and } a_r^o = \frac{1}{R}$$

Suppose
$$\pi(\varphi^{n-1} | S^{n-1}) = \sum_{r} a_r^{n-1} \delta(\varphi^{n-1} - \varphi_r^{n-1})$$

$$\pi(\varphi^n, s^n | S^{n-1}) = \sum_{r} a_r^{n-1} \exp[-\sum_{k} \frac{1}{2\sigma_k^2} (h_k(\varphi^n) - s_k^n)^2] \delta(\varphi^n - \varphi_r^n)$$
where $\varphi_r^n = F(\varphi_r^{n-1}, c^n)$

$$\pi(\varphi^n \mid S^n) = \sum_r a_r^n \delta(\varphi^n - \varphi_r^n)$$
where $a_r^n = \frac{\overline{a}_r^n}{\sum_{r'} \overline{a}_{r'}^n}$ and $\overline{a}_r^n = a_r^{n-1} \exp\left[-\sum_k \frac{1}{2\sigma_k^2} (h_k(\varphi_r^n) - s_k^n)^2\right]$

UQ: Formulation of filtering (practical approach)

The 'ensemble variational filter'

Let
$$\pi_g(\varphi \mid \overline{\varphi}, L) = z \exp[-\frac{1}{2}(\varphi - \overline{\varphi})' L(\varphi - \overline{\varphi})]$$

$$\pi(\varphi^0) = \sum_{r=1}^R a_r^o \pi_g(\varphi^0 \mid \varphi_r^0, RL_r^0) \quad \text{where } \varphi_r^0 \sim \pi_0(\varphi^0),$$

$$a_r^o = \frac{1}{R} \text{ and } L_r^0 = \text{inverse prior cov.}$$

Suppose
$$\pi(\varphi^{n-1} | S^{n-1}) = \sum_{r} a_r^{n-1} \pi_g(\varphi^{n-1} | \varphi_r^{n-1}, RL_r^{n-1})$$

Let
$$J_r^n(\varphi^n) = \sum_k \frac{1}{2\sigma_k^2} (h_k(\varphi^n) - s_k^n)^2 + \frac{R}{2} (F^{-1}(\varphi^n, c^n) - \varphi_r^{n-1}) L_r^{n-1} (F^{-1}(\varphi^n, c^n) - \varphi_r^{n-1})$$

$$\varphi_r^n = \underset{\varphi^n}{\operatorname{arg\,min}} J_r^n(\varphi^n), \quad \overline{\varphi}^n = \sum_{r=1}^R a_r^o \varphi_r^n, \quad \alpha_i^2 = \sum_{r=1}^R a_r^o (\overline{\varphi}_i^n - \varphi_{r,i}^n)^2$$

$$L_{r,ij}^{n} = (A_r L_r^0 A_r)_{ij} + \frac{\delta_{ij}}{\alpha_i^2} \text{ where } A_{r,ij} = \frac{\partial F_i^{-1}(\varphi^n, c^n)}{\partial \varphi_j^n} \bigg|_{\varphi_r^n}$$

Main heuristic, clf 2014

UM: Formulation of stochastic control

Suppose:
$$G_i(\varphi^n, \varphi^{n-1}, c^n) = 0$$

$$s_k^n = h_k(\varphi^n) + \sigma_k^n \xi_k^n \quad \text{where} \quad \xi_k^n \sim N(0, 1)$$

For given
$$c^{1:n}$$
, $\exists F^{(n)}$ s.t. $\varphi^n = F^{(n)}(\varphi^0, c^{1:n})$

Suppose c^0 and σ^0 are the initial settings of the controls

Let
$$\gamma^N = \sum_n [\gamma_{\varphi}(\varphi^n) + \gamma_c(c^n, c^{n-1}) + \gamma_{\sigma}(\sigma^n, \sigma^{n-1})]$$

e.g.
$$\gamma_u = \kappa_u (c^n - c^{n-1})^2$$
 and $\gamma_\sigma = \frac{\kappa_{\sigma,0}}{\sigma^n} + \kappa_{\sigma,1} (\sigma^n - \sigma^{n-1})^2$

for some positive constants $\kappa_u, \kappa_{\sigma,0}$ and $\kappa_{\sigma,1}$

UM: The stochastic control problem

Seek control *policy functions* \tilde{u}^n , $\tilde{\sigma}^n$:

$$c^{n} = \tilde{c}^{n}(S^{n-1}), \quad \sigma^{n} = \tilde{\sigma}^{n}(S^{n-1})$$

Such that

$$\{\tilde{c}^n, \tilde{\sigma}^n\}_{n=0}^N = \underset{\{\tilde{c}^n, \tilde{\sigma}^n\}}{\operatorname{arg\,min}} \ \overline{\gamma}^N$$

where

$$\overline{\gamma}^{N} = \int \sum_{n=1,N} [\gamma_{\varphi}(\varphi^{n}) + \gamma_{c}(c^{n},c^{n-1}) + \gamma_{\sigma}(\sigma^{n},\sigma^{n-1})] \pi(\varphi^{0}) \pi(\xi^{1:N-1}) d\varphi^{0} d\xi^{1:N-1}$$

For a discussion of *policy functions* see:

W.B. Powell, 'Clearing the jungle of stochastic optimization' http://castlelab.princeton.edu

UM: Stochastic model predictive control

MPC: At *each* time t^n

Suppose that for times 1:(n-1)

The policy values $\sigma^{1:n-1}$, $c^{1:n-1}$ have been applied

Solve the filtering problem for $\pi(\varphi^{n-1} \mid S^{n-1})$ and sample for

$$\varphi_r^{n-1} \sim \pi(\varphi^{n-1} \mid S^{n-1})$$

Then compute new policy values $u^{n:N}$ such that

$$c^{n:N} = \underset{c^{n:N}}{\operatorname{argmin}} \sum_{m=n}^{N} \left\{ \sum_{r} \left(a_r^{n-1} \gamma_{\varphi}(\varphi_r^m) \right) + \gamma_c(c^m, c^{m-1}) \right\}$$

with φ_r^m understood as functions of φ_r^{n-1} and the controls $c^{n-1:N}$

Apply the controls c^n only at time n (i.e. discard the later controls) and make the observation of s^n .

UM: Beyond model predictive control

Problem A:

Within MPC with constant control parameters, how do we find an optimal observation variance, σ^n ?

Problem B: Compute linear control functions in a similar way
-- using an ensemble to estimate the mean cost

$$\tilde{c}^n = c_0^n + c_1^n \cdot s^n$$

$$\tilde{\sigma}^n = \sigma_0^n + \sigma_1^n \cdot s^n$$

and so on.

Discussion

- Smoothing and filtering problems can be solved fairly well using Bayesian formulations and optimisation methods using adjoint techniques.
- Control problems are very challenging. We can formulate them but to go beyond
 MPC for large-scale engineering or geoscience problems is an outstanding challenge to us all.

We could also consider the topics of:

How to keep all matrices sparse and avoid any matrix inversions (e.g. clf 2007)

Stochastic dynamical systems

Robust control

Forecast evaluation

Model sensitivity

Model criticism and comparison

Multi-objective optimisation (Pareto fronts)

Adaptive management

References

- A. O'Hagan and J. Forster: Kendall's Advanced Theory of Statistics. Vol 2B, Bayesian Inference. 2nd Edition. Arnold Publishers, 2004.
- B.D.O. Anderson & J.B. Moore: Optimal Filtering, Prentice Hall 1979. (Dover 2005).
- A.H. Jazwinski: Stochastic Processes and Filtering Theory. Academic Press, 1970.
- G. Evensen: *Data Assimilation: The Ensemble Kalman Filter* (2nd Edition). Springer 2009.
- C.L. Farmer: Bayesian Field Theory Applied to Scattered Data Interpolation and Inverse Problems. pp. 147-166. Algorithms for Approximation. Editors. A. Iske and J. Levesley, Springer-Verlag, Heidelberg, 2007.
- Inverse Theory for Petroleum Reservoir Characterization and History Matching. D. S. Oliver,
 A. C. Reynolds and N. Liu. Cambridge University Press, 2008.
- Silverman, B.W. 1986 Density Estimation for Statistics and Data Analysis, Chapman and Hall.
- Stordal, A.S., Karlsen, H.A., Nævdal, G., Skaug, H.J., &Vallès, B. 2011 Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter. Computational Geosciences, 15(2), pp 293-305.
- C. L. Farmer. "An ensemble variational filter for sequential inverse problems". Proceedings
 of 'Inverse Problems -- from Theory to Applications (IPTA 2014)', pp 164-168, Institute of
 Physics, 2014. http://ipta2014.iopconfs.org/IPTAProceedings
- W. Lee and C. L. Farmer. 2014. "Data Assimilation by Conditioning of Driving Noise on Future Observations". IEEE Transactions on Signal Processing, 62 (15), pp 3887-3896.

References

- J. D. Jansen: Adjoint-based optimization of multi-phase flow through porous media A review. Computers and Fluids, v 46, pp 40-51, 2011.
- D. P. Bertsekas: Dynamic Programming and Optimal Controli. Vol. I, 3rd Edition, 2005.
 Vol. II, 4th Edition, 2012 (On Approximate Dynamic Programming)
- W.B. Powell: Approximate Dynamic Programming, 2nd Edition. Wiley, 2011.
- P. Whittle: Optimal Control: Basics and Beyond. Wiley 1996.

UM: Extra slides

Analytical solution of a one-step stochastic control problem for the logistic map.

This is equivalent to a *decision problem* where we need to decide what measurement to make before making it, and then observing and then setting the control on the basis of the *feedback* from the measurement.

Model:
$$x = 1 - ux_0^2$$
, $x_0 \sim N(q, \lambda^2)$

Choose u, changing it from u_{-1} with cost = $\frac{\beta}{2}(u(v,s) - u_{-1})^2$

to land near z with an error cost = $\frac{\gamma}{2}(x-z)^2$

Observations of x_0 cost $\frac{\alpha}{2v^2}$; you need to choose v too.

i.e.
$$s = x_0 + v\zeta$$
, $\zeta \sim N(0,1)$

total cost =
$$\frac{\alpha}{2v^2} + \frac{\beta}{2}(u - u_{-1})^2 + \frac{\gamma}{2}(x - z)^2$$

But as we do not know x_0 very well we do not know x.

So what should we do?

Taking variations w.r.t.u gives

$$\frac{dJ(u+\varepsilon\delta u)}{d\varepsilon}\bigg|_{\varepsilon=0} = 0 = \int_{\varepsilon=0}^{\infty} \left[\beta(u(v,s)-u_{-1})\delta u - \gamma(1-ux_{0}^{2}-z)\delta u \,x_{0}^{2}\right] N(s-x_{0},v^{2}) N(x_{0}-q,\lambda^{2}) dx_{0} ds$$
So
$$\int_{\varepsilon=0}^{\infty} \left[\beta(u(v,s)-u_{-1}) - \gamma(1-ux_{0}^{2}-z) \,x_{0}^{2}\right] N(s-x_{0},v^{2}) N(x_{0}-q,\lambda^{2}) dx_{0} = 0$$
and
$$u(v,s) = \frac{\int_{\varepsilon=0}^{\infty} \left[\beta u_{-1} + \gamma(1-z) \,x_{0}^{2}\right] N(s-x_{0},v^{2}) N(x_{0}-q,\lambda^{2}) dx_{0}}{\int_{\varepsilon=0}^{\infty} \left[\beta + \gamma(1+x_{0}^{4})\right] N(s-x_{0},v^{2}) N(x_{0}-q,\lambda^{2}) dx_{0}}$$

$$x = 1 - ux_0^2, \quad x_0 \sim N(q, \lambda^2)$$

$$s = x_0 + v\xi, \quad \xi \sim N(0, 1)$$

$$\pi(x, s, x_0) = \delta(x - 1 + ux_0^2)N(s - x_0, v^2)N(x_0 - q, \lambda^2)$$

$$J(v) = \frac{\alpha}{2v^2} + \int \left[\frac{\beta}{2} (u(v,s) - u_{-1})^2 + \frac{\gamma}{2} (x-z)^2 \right] \delta(x-1 + ux_0^2) N(s-x_0, v^2) N(x_0 - q, \lambda^2) dx_0 dx ds$$
so

$$J(v) = \frac{\alpha}{2v^2} + \int \left[\frac{\beta}{2} (u(v,s) - u_{-1})^2 + \frac{\gamma}{2} (1 - ux_0^2 - z)^2 \right] N(s - x_0, v^2) N(x_0 - q, \lambda^2) dx_0 ds$$

Find a control policy u(v, s) and a measurement accuracy v.

$$J^*(v) = \inf_{u} J, \qquad J^* = \inf_{v} J^*(v)$$

Using the calculus of variations one can show that:

$$u(v,s) = \frac{\beta u_{-1} + \gamma (1-z)(\kappa^2 + a^2)}{\beta + \gamma (a^4 + 6a^2\kappa^2 + 3\kappa^4)}$$
where $a = \frac{s\lambda^2 + qv^2}{\lambda^2 + v^2}$
and $\kappa = \frac{\lambda v}{\sqrt{\lambda^2 + v^2}}$

Remember: $N(s - x_0, v^2) \sim \text{likelihood}$ $N(x_0 - q, \lambda^2) \sim \text{prior}$

Control policy for the logistic map

 $\lambda = 0.5$ ~ prior standard deviation

q = 0.6 ~ prior mean

z = 0.1

 $\alpha = 1.0$

 $\beta = 10^{-3}$

 $\gamma = 10^4$

Cost-to-go for the logistic map by numerical integration

 (v^*, J^*) is at the minimum of the curve

UQ: Extra slides

Application of the ensemble variational filter to the filtering problem on the Lorenz-96 equations

UQ: Numerical example: Lorenz 96

$$\frac{du_i}{dt} = 0$$
: 'reality' and forward model

$$\frac{dv_i}{dt} = (v_{i+1} - v_{i-2})v_{i-1} - v_i(\kappa + e^{u_i}) + W_i \quad : \text{'reality' and forward model}$$

$$\varphi = (u, v)$$

Reality:

$$u_i = 0.5 + 0.2 \sin(0.3 i) + 0.02 (0.5 - \xi'_i);$$
 $W_i = 10.0$
 $v_i(0) = 10 + 2\xi''_i$ $\xi'_i, \xi''_i \sim N(0,1)$ iid

See Yang & DelSole 2009, 2010 for related work

No parameters are observed. 1000 equilibration steps before observing

Observe variables with $\sigma_i^2 = 0.01$

Initialised with random sampling. Window: $w(R) = R^{0.1}$

Cor. lengths. 4.0 (parms) & 0.1 (vars) Init. var 1.0 parm and 10.0 var

Implicit Euler, time step = 0.01 between obs and for dynamics

Yang, X., and DelSole, T. 2009 Using the ensemble Kalman Filter to estimate multiplicative model parameters. Tellus, 61, pp 601-609. DelSole, T. and Yang, X. 2010 State and parameter estimation in stochastic dynamical models. Physica D, 239, pp 1781-1788.

UQ: 2/10

'Validation': R = 8. Observe all variables

R = 8. Observe each 7th variable

UQ: 4/10

R = 8. Observe each 7th variable

Root mean square distance of ensemble members (green) and the mean (blue) from the truth plotted against time

The ensemble variational filter

The value of Implicit Euler time discretisation

time step au

$$\frac{d\varphi_i}{dt} = f_i(\varphi, t)$$

$$\varphi^n = \varphi^{n-1} + \tau f(\varphi^n)$$

One finds:

$$F^{-1}(\varphi^n) = \varphi^n - \tau f(\varphi^n)$$

Also:

$$A_{ij}^{n} = \delta_{ij} - \tau \frac{\partial f_{i}(\varphi^{n})}{\partial \varphi_{j}^{n}}$$

The ensemble variational filter

Heuristic for updating the weights

$$\ddot{a}_r^n = a_r^{n-1} \frac{|L_r^{n-1}|^{1/2}}{|L_r^n|^{1/2}} \exp(-J_r^n(\varphi_r^n))$$

$$a_r^n = \varepsilon_w \frac{1}{R} + (1 - \varepsilon_w) \frac{\ddot{a}_r^n}{\sum \ddot{a}_r^n}$$

Stordal et al 2011

Variational Smoothing Filter

Updating the precision matrices

1.
$$L_{ij,r}^{n} = \frac{\partial^{2} J_{r}^{n}(\varphi^{n})}{\partial \varphi_{i}^{n} \partial \varphi_{j}^{n}}\bigg|_{\varphi_{r}^{n}}$$

All of the component matrices are sparse

$$= p_{i}\delta_{ij} + \sum_{mk} (A_{im,r}^{n} L_{mk,r}^{n-1} A_{kj,r}^{n} - \tau \frac{\partial^{2} f_{m}(\varphi_{i}^{n})}{\partial \varphi_{i,r}^{n} \partial \varphi_{j,r}^{n}} L_{mk,r}^{n-1}(\varphi_{k,r}^{n} - \tau f_{k}(\varphi_{r}^{n}) - \varphi_{k,r}^{n-1}))$$

2. Approximate
$$\frac{|L_r^{n-1}|^{1/2}}{|L_r^n|^{1/2}} \approx 1$$

3. Reset
$$L_{ij,r}^n = (A_r^{nT} L_r^0 A_r^n)_{i,j} + \frac{w(R) \delta_{ij}}{\varepsilon + \text{var}_i}$$
 every time step

Main heuristic

where w(R) is a slowly increasing function of R and $var_i = empirical$, ensemble variance of the ensemble $\{\varphi_r^n\}$

Choosing L^0 via local random fields – for sparsity

clf 2007

$$Q(\psi) = \frac{1}{2} \int [a\psi^2 + b(\nabla \psi)^2 + c(\nabla^2 \psi)^2] d\omega = \frac{1}{2} \int [\psi L\psi] d\omega$$

where
$$L = a - b\nabla^2 + c\nabla^2\nabla^2$$

$$\pi(\varphi) = z \exp(-Q(\varphi - \overline{\varphi}))$$

Helmholtz Green's functions

$$g(r) = \frac{e^{-r\sqrt{\frac{a}{b}}}}{4\pi rb} \qquad 3D$$

$$g(r) = \frac{e^{-r\sqrt{\frac{a}{b}}}}{4\sqrt{ab}} \quad 1D$$

$$g(x-y) := \langle \varphi(x)\varphi(y) \rangle$$

Theorem:
$$Lg(x-y) = \delta(x-y)$$

After discretisation L_{ij} is sparse and $C = (L)^{-1}$ is the covariance matrix

 $L = a - b\nabla^2$ - the 'Helmholtz precision matrix' - is particularly convenient and was used in the numerical experiments on Lorenz-96

Set $L_r^0 = wL$ for some 'sharpness control' w that increases with R

UQ: 9/10

'Validation': Observe all variables

Approximate sparse precision matrix

UQ: 10/10