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Four-dimensional variational assimilation (4D-Var)

The 4D-Var data assimilation problem can be expressed as the
minimization of

J [x0] =
1

2
(x0−xb)TB−1(x0−xb)+

1

2

N∑
i=0

(Hi [xi ]−yi )TR−1i (Hi [xi ]−yi )

subject to the dynamical system

xi+1 =Mi (xi )

where

xb A priori (background) estimate
yi Observation
B Background error covariance matrix
Ri Observation error covariance matrix
Hi Observation operator
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Incremental 4D-Var (Gauss-Newton)

We usually solve the 4D-Var problem by a series of linear quadratic
minimizations of the form

J̃ (k)[δx
(k)
0 ] =

1

2
(δx

(k)
0 − [xb − x0

(k)])TB−1(δx
(k)
0 − [xb − x0

(k)])

+
1

2

N∑
i=0

(Hiδx
(k)
i − d

(k)
i )TR−1i (Hiδx

(k)
i − d

(k)
i )

with

di = yi −Hi [x
(k)
i ]

δxi+1 = Miδxi

This is equivalent to a Gauss-Newton iteration (Lawless et al.
(2005), Quart. J. Roy. Met. Soc.).
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Alternative notation

For the linear case we can write the cost function as follows:

J (x0) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2
(ŷ − Ĥx0)T R̂−1(ŷ − Ĥx0),

ŷ =



y0
y1
.
.
.

.

.

.

.

.

.
yN


Ĥ =



H0
H1M0→1

.

.

.

.

.

.

.

.

.
HNM0→N


and R̂ =



R0 0 · · · · · · 0
0 R1 0 · · · 0

.

.

. 0 0

.

.

.

.

.

.

.

.

.

.

.

. · · ·
. . . 0

0 · · · · · · 0 RN


.
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Model uncertainty

In practice models contain errors, due to

Inaccurate parameter specifications

Inaccurate parametrisations of sub-grid physical processes

Inaccurate specification of boundary conditions

Numerical schemes only approximate solutions

Poor model resolution

We wish to account for this in the data assimilation process.
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Model uncertainty

Assumptions

Linear model

Additive model error

Model error unbiased, Gaussian, random

True model
xti+1 = Mt

i x
t
i

Erroneous model

xti+1 = Mix
t
i + ηi , ηi ∼ N (0,Qi )
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Modifying the observation error covariance
(work with Kat Howes and Alison Fowler)

Consider again the form of the objective function

J (x0) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2
(ŷ − Ĥx0)TR∗−1(ŷ − Ĥx0),

ŷ =



y0
y1
.
.
.

.

.

.

.

.

.
yN


Ĥ =



H0
H1M0→1

.

.

.

.

.

.

.

.

.
HNM0→N


where now M is the erroneous model and R∗ is the covariance of
ε∗ob = ŷ − Ĥxt0.

How should we specify R∗?
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Combined model error and observation error covariance

Let,

R∗(i,k) =< ε∗obi (ε
∗
obk)T > .

Then,

R∗(i,k) =



R0 for i=k=0

Ri + Hi

[
min(i,k)∑

j=1

Mj→iQjMj→k
T

]
Hk

T for i=k

Hi

[
min(i,k)∑

j=1

Mj→iQjMj→k
T

]
Hk

T otherwise.

(1)
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Combined model error and observation error covariance
matrix

R∗ =


R0 0 · · · · · · 0
0 R1 + Q∗(1,1) Q∗(1,2) · · · Q∗(1,N)
... Q∗(2,1) R2 + Q∗(2,2)

...
...

...
... · · · . . .

...
0 Q∗(N,1) · · · · · · RN + Q∗(N,N)

 .

increase in block diagonal terms due to model error;

off diagonal block model error covariance terms (time
correlations of model error);

model error covariance terms vary over time.

How can we calculate this?
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Calculating the modified covariance matrix

Define
(dob)i = yi −HiM0→ix

b.

Then we can show that

E [(dob)i (d
o
b)k

T ] = R∗(i ,k) + HiM0→iBM0→k
THk

T .

Or

R∗(i ,k) = E [(dob)i (d
o
b)k

T ]−HiM0→iBM0→k
THk

T .
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Idealized coupled nonlinear model

Couples the Lorenz 63 system and 2 linear equations∗,

ẋ = −σx + σy + αv ,

ẏ = −xz + rx − y + αw ,

ż = xy − bz ,

ẇ = −Ωv − k(w − w∗)− αy ,
v̇ = Ω(w − w∗)− kv − αx ,

(2)

where σ = 10, r = 30, b = 8
3 , k = 0.1, Ω = π

10 and w∗ = 2.

Runge-Kutta 2nd order method with fixed time step
∆t = 0.01 used to approximate solution of coupled ODE’s.

Consider this as ‘true’ model.

∗F. Molteni et al., (1993), J. Climate.
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True idealized coupled nonlinear model

Parameter perturbation method: Stochastic forcing simulation∗, but with
Gaussian error distributions and random error at each time-step.

The true parameter values σt , k t and αt change at every time-step,

σi
t = γσσ, where γσ ∼ N (1, 1

12

2
),

ki
t = γkk , where γk ∼ N (1, 16

2
),

αi
t = γαα, where γα ∼ N (1, 1

12

2
),

The difference between the true and erroneous model at each time can
be considered as additive model error ηi of the form,

xti =Mi−1(xti−1) + ηi i = 1, 2, ...500.

∗ R. Buizza et al. (1999), Quart. J. Roy. Met. Soc.
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Numerical experiments: design

Assimilation window length 500 time-steps of length ∆t = 0.01, with all
variables observed every 10 time-steps directly. Let B = Ri = 10−4I.

Perturb the true model states using B and Ri respectively to produce
background model state xb and observations yi .

Select background vector xb and perturb using B to obtain a sample of
20 background values (note these are all at initial time t0).

For each observation time ti : select observation vector yi and perturb
using Ri to obtain a sample of 20 observations.

Use these samples to estimate (do
b)i = yi −HiM0→ix

b at each
observation time ti .

Take the expectations of the innovation products E [(do
b)i (d

o
b)i

T ] at
each observation time ti .

Calculate R∗(i,i) = E [(do
b)i (d

o
b)i

T ] −HiM0→iBM0→i
THi

T .

Compare 4DVar analysis accuracy using R∗ as opposed to R̂.
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Numerical experiments: results

Method 1: use R̂ in 4DVar

Method 2: use R∗ in 4DVar

Variable Truth Analysis Error % Analysis Error %
Method 1 Method 1 Method 2 Method 2

x -3.4866 -3.1111 10.77 -3.4829 0.11
y -5.7699 -5.2994 8.15 -5.7843 0.25
z 18.341 18.6500 1.68 18.3464 0.03
w -10.7175 -10.8140 0.90 -10.7181 0.01
v -7.1902 -7.9787 10.97 -7.1928 0.04

Table : Analysis from Method 1 and Method 2.
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Numerical experiments: results

Figure : Trajectory for w over the assimilation window.
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Weak-constraint 4D-Var
(work with Adam El-Said and Nancy Nichols)

Previously we had the objective function

J [x0] =
1

2
(x0−xb)TB−1(x0−xb)+

1

2

N∑
i=0

(Hi [xi ]−yi )TR−1i (Hi [xi ]−yi )

subject to the dynamical system

xi+1 =Mi (xi ).

We now consider the model as a weak constraint

xi+1 =Mi (xi ) + ηi , ηi ∼ N (0,Qi )
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Weak-constraint 4D-Var

Error formulation

J (x0,η0, . . . ,ηN−1) = Jb + Jo +
1

2

N−1∑
i=0

ηT
i Q
−1
i ηi

State formulation

J (x0, x1, . . . , xN)

= Jb + Jo +
1

2

N−1∑
i=0

(xi+1 −Mi (xi ))TQ−1i (xi+1 −Mi (xi ))
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Condition number

The expected accuracy of the numerical solution and the speed of
convergence are both determined by the condition number of the
Hessian.
Condition number

κ(A) = ||A||||A−1||

In the matrix 2-norm, for a symm. pos. def. matrix A, we have

κ(A) = λmax(A)/λmin(A)

What are the condition numbers of the Hessians of the two
formulations sensitive to?
(extends previous work on strong-constraint case by Haben,
Lawless and Nichols)
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Hessian - Error formulation: Sp = ∇2J (x0, ηi)

Sp = D−1 + L−THTR−1HL−1

Sp =

 B−1
0

Q−1
1 .

.
Q−1

n

 +
HT

0 (H1M1)
T (H2M2M1)

T ... (HnMn...M1)
T

HT
1 (H2M2)

T ... (HnMn...M2)
T

HT
2

. . .
...

. . . (HnMn)
T

HT
n

R−1


H0

H1M1 H1

H2M2M1 H2M2 H2

...
. . .

. . .
HnMn...M1 ... HnMn Hn


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Hessian - State formulation: Sx = ∇2J (xi)

Sx = LTD−1L + HTR−1H

Sx =

B−1
0 +MT

1 Q−1
1 M1 −MT

1 Q−1
1

−Q−1
1 M1 Q−1

1 +MT
2 Q−1

2 M2 −MT
2 Q−1

2

−Q−1
2 M2

. . .

−MT
n−1Q

−1
n−1

−Q−1
n−1Mn−1 Q−1

n−1+MT
n Q−1

n Mn −MT
n Q−1

n

−Q−1
n Mn Q−1

n


+


HT
0 R−1

0 H0

HT
1 R−1

1 H1

. . .
HT
n R−1

n Hn


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Assumptions

Background and Model errors are correlated only spatially.
Also, the model error covariance matrices are time invariant:

B0 = σ2
bCB and Qi = σ2

qCQ for all i = 1, ...,N.
CB and CQ are valid auto-covariance matrices. (Symmetric
pos-def)

Observation errors are uncorrelated =⇒ Ri = σ2o I for all
i = 0, ...,N.

We take p regularly spaced, direct observations at every time
step giving p(N + 1) observations in total.

Observations available are less than the size of the state,
p(N + 1) < n(N + 1).
We observe at the same positions at each time step.

The model M is a circulant matrix.
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Error formulation - Bounds

Bounds have been derived on the condition number of the Hessian
Sp. These bounds indicate:

Decreasing σ2o (specifying accurate observations) increases
κ(Sp).

Longer assimilation windows increase κ(Sp)

κ(Sp) is linearly influenced by κ(D).

As the difference between σ2b and σ2q increases, so does κ(Sp).

κ(B0) and κ(Qi ) increase as correlation length-scales are
increased
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State formulation - Bounds

Bounds have been derived on the condition number of the Hessian
Sx . These bounds indicate:

As observation density decreases, the sensitivity to length of
assimilation window increases.

Interesting feature: κ(Sx) is immune to assimilation window
length iff observation operator is full rank

Otherwise: as assimilation window length increases, so does
κ(Sx). Due to λmin(LTD−1L)→ 0, (second derivative
matrix).

Very sensitive to condition number of D, with the addition of
increased sensitivity to σq (in comparison to Sp).
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Numerical Results: Error formulation

We demonstrate the bounds by viewing the condition number as a
function of correlation length-scale:

Figure : κ(Sp) (blue-surface) and bounds (red-mesh surfaces) as a
function of L(CB) and L(CQ).
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Numerical Results: State formulation

The J (xi ) formulation is more sensitive to κ(D):

Figure : Surface plot of κ(Sx) (blue surface) and bounds (red mesh).
Non-vertical axes measure background error correlation length-scale L(CB) and
model error correlation length-scale L(CQ). Vertical axis measures condition
number.
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Numerical Results: State formulation

We now consider the condition number as a function of assimilation
window length and observation density:

Figure : Surface plot of κ(Sx) (blue surface). Vertical axis measures
condition number. The non-vertical axes measure spatial observation
density q and assimilation window length n.A.S.Lawless, a.s.lawless@reading.ac.uk Model error in variational assimilation
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Summary

Allowing for model uncertainty becoming more important in
data assimilation.

Appropriate inflation of covariances can increase accuracy of
state estimate at initial time.

Does not require prior knowledge of model error statistics.

Weak-constraint formulations a possible way forward -
Requires specification of statistics.

Different formulations lead to optimization problems with
different sensitivities.

A.S.Lawless, a.s.lawless@reading.ac.uk Model error in variational assimilation



Introduction Modifying the observation error covariance Weak-constraint 4D-Var Summary

Summary

Allowing for model uncertainty becoming more important in
data assimilation.

Appropriate inflation of covariances can increase accuracy of
state estimate at initial time.

Does not require prior knowledge of model error statistics.

Weak-constraint formulations a possible way forward -
Requires specification of statistics.

Different formulations lead to optimization problems with
different sensitivities.

A.S.Lawless, a.s.lawless@reading.ac.uk Model error in variational assimilation



Introduction Modifying the observation error covariance Weak-constraint 4D-Var Summary

Summary

Allowing for model uncertainty becoming more important in
data assimilation.

Appropriate inflation of covariances can increase accuracy of
state estimate at initial time.

Does not require prior knowledge of model error statistics.

Weak-constraint formulations a possible way forward -
Requires specification of statistics.

Different formulations lead to optimization problems with
different sensitivities.

A.S.Lawless, a.s.lawless@reading.ac.uk Model error in variational assimilation



Introduction Modifying the observation error covariance Weak-constraint 4D-Var Summary

Summary

Allowing for model uncertainty becoming more important in
data assimilation.

Appropriate inflation of covariances can increase accuracy of
state estimate at initial time.

Does not require prior knowledge of model error statistics.

Weak-constraint formulations a possible way forward -
Requires specification of statistics.

Different formulations lead to optimization problems with
different sensitivities.

A.S.Lawless, a.s.lawless@reading.ac.uk Model error in variational assimilation



Introduction Modifying the observation error covariance Weak-constraint 4D-Var Summary

Summary

Allowing for model uncertainty becoming more important in
data assimilation.

Appropriate inflation of covariances can increase accuracy of
state estimate at initial time.

Does not require prior knowledge of model error statistics.

Weak-constraint formulations a possible way forward -
Requires specification of statistics.

Different formulations lead to optimization problems with
different sensitivities.

A.S.Lawless, a.s.lawless@reading.ac.uk Model error in variational assimilation


	Introduction
	Modifying the observation error covariance
	Weak-constraint 4D-Var
	Summary

