Strategies for Capturing High Dimensional Functions

Ronald DeVore

Texas A& M University

Cambridge 2016 – p. 1/34

Challenging World Problems

- Some of the most pressing scientific problems challenge our computational ability
 - Atmospheric modeling: predicting climate change
 - Monitoring threat activities
 - Contaminant transport
 - Optimal engineering design
 - Medical diagnostics
 - Modeling the internet
 - Option pricing, bond valuation

9

Cambridge 2016 - p. 2/34

Mathematical/Computational Challenge

- One common characteristic of these problems is they involve processes with many variables or parameters
- Mathematically this means we are faced with numerically approximating a high dimensional function
 - $F: [0,1]^D \to X$
 - X a Banach space (often just \mathbb{R} or \mathbb{R}^m)
 - D large and possibly infinite
 - Typical Computational Tasks
 - Create an approximation \hat{F} to F
 - Evaluate some quantity of interest: Q(F)
 - Q is some linear or nonlinear functional, for example
 - $\cdot Q(F)$ is a high dimensional integral of F
 - Q(F) is the max or min of F

Cambridge 2016 – p. 3/34

Evaluating Algorithms

- To have a meaningful discussion of the quality of algorithms one needs
 - a norm on functions to measure error $\|\cdot\| = \|\cdot\|_Y$
 - Typically Y is an L_p space or uniform norm $(p = \infty)$
 - the assumptions made on F
- We view the assumptions we make about F as placing F in a model class \mathcal{K} which is a compact subset of Y
 - In numerical analysis of the last century model classes were almost exclusively smoothness spaces
 how many derivatives does *F* have
 - Statistical model classes place restrictions on the regression function or the probability distribution
 - In Signal/Image Processing conditions on the Fourier Transform of *F* - e.g. band limited

Cambridge 2016 – p. 4/34

Bad News

- Classical model classes based solely on smoothness of
 F are not sufficient in high dimensions
 - Suppose the assumption is that F is real valued and has smoothness (of order s)
 - Approximation theory tells us with *n* computations we can only capture *F* to accuracy $C(D, s)n^{-s/D}$ where *D* is the number of variables
 - When D is large than s must also be very large to guarantee any reasonable accuracy
 - But we have no control over s which is inherent in the real world problem
 - So conventional assumptions on F and conventional numerical methods will not work

Also beware that C(D, s) grows exponentially with D

Example (Novak-Wozniakowski)

- To drive home the debilitating effect of high dimensions consider the following example $\Omega := [0,1]^D, \quad X = I\!\!R, \quad \mathcal{K} := \{F : \|D^{\nu}F\|_{L_{\infty}} \leq 1, \forall \nu\}$
- Any algorithm which computes for each $F \in \mathcal{K}$ an approximation \hat{F} to accuracy 1/2 in L_{∞} will need at least $2^{D/2}$ FLOPS
- So if D = 100, we would need at least $2^{50} \simeq 10^{15}$ computations to achieve even the coarsest resolution
- This phenomenon is referred to as The Curse of Dimensionality
- The usual definition of the Curse is polynomial in d versus exponential in d growth in computational cost
- Real question is whether an acceptable error tolerance can be reached in alloted computational time cambridge 2016 – p. 6/34

The Remedy

- Conventional thought is that most real world HD functions do not suffer the curse
- Classical smoothness models is not the right model -need new models
 - Sparsity : F is a sum of a small number of functions from a fixed basis/frame/dictionary
 - Anisotropy/Variable Reduction: not all variables are equally important - get rid of the weak ones
 - Tensor structures: variable separability
 - Superposition: F is a composition of functions of few variables - Hilbert's 13-th problem
 - Many new approaches based on these ideas: Manifold Learning; Laplacians on Graphs; Sparse Grids; Sensitivity Analysis; ANOVA Decompositions; Tensor Formats; Discrepancy
 Cambridge 2016 – p. 7/34

Numerical Algorithms

- Let us turn now to constructing numerical algorithms in HD -such algorithms depend on the information we are given about F
- Setting I: Query Algorithms: We can ask questions about *F* in the form of Queries
 - A query is the application of a linear functional to F
 - Examples: Point evaluation or weighted integrals
 - Given that $F \in \mathcal{K}$ and a query budget n where should we query to best reconstruct F
- Setting II: Data Assimilation: We cannot ask questions but rather are given data in the form of some information about *F*?
 - Given that $F \in \mathcal{K}$ and given the data how can we best reconstruct F

Numerical Goals

- Determine performance limits for the model class
- Does it break the curse of dimensionality?
- Certifiability of the performance of the proposed algorithm
- Rate-distortion guarantees
- Is the proposed algorithm optimal/ near optimal?

General complexity bound: Entropy

- There is a general criteria to see whether a model class K is HD friendly for computation
- It is given by the Kolmogorov metric entropy of \mathcal{K}
 - Given ϵ > 0: How many balls of radius ϵ in Y do we need to cover K?
 - $N_{\epsilon}(\mathcal{K})_{Y}$ denotes the smallest number
 - $H_{\epsilon}(K)_Y := \log_2 N_{\epsilon}(K)_Y$ Kolmogorov entropy
 - any numerical method which captures each $F \in \mathcal{K}$ to accuracy ϵ will need at least $H_{\epsilon}(\mathcal{K})_{Y}$ computations
 - So if the entropy of ${\boldsymbol{\mathcal{K}}}$ is not reasonable this is not a useful model class
 - For example: This is how to prove the Novak-Wozniakowski result

Cambridge 2016 – p. 11/34

Cambridge 2016 - p. 12/34

An Example: Parametric PDEs

- $\Omega \subset \mathbb{R}^d$ domain and \mathcal{A} is a collection of diffusion coefficients a that satisfy the Uniform Ellipticity Assumption: $0 < r \leq a(x) \leq R, x \in \Omega$
- u_a solution to the elliptic problem

$$(*) \quad -\operatorname{div}(a(x)\nabla u_a(x)) = f(x), \quad x \in \Omega, \\ u_a(x) = 0, \quad x \in \partial\Omega$$

- $a(x,y) = \bar{a}(x) + \sum_{j=1}^{\infty} y_j \psi_j(x), y_j \in [-1,1], j = 1, 2, \dots$
- $F(y) = u_{a(y)}$ $F: [-1,1]^{\mathcal{N}} \mapsto X$, $X := H_0^1$ $D = \infty$

• \hat{F} is an on line method for computing $F(y) = u_{a(y)}$, $\forall y$

Cambridge 2016 – p. 13/34

Query Algorithms

- A query algorithm extracts information $\ell_1(F), \ldots, \ell_n(F)$ and creates an approximation $A_n(F) \in Y$ to F using only the extracted data and knowledge $F \in \mathcal{K}$
- The minimal distortion in query algorithms is

 $\delta_n(\mathcal{K}) := \inf_{A_n} \sup_{F \in \mathcal{K}} \|F - A_n(F)\|_Y$

If no restrictions are imposed on the queries the optimal performance is given by the Gelfand width $d^n(\mathcal{K})_Y$

 $\delta_n(\mathcal{K}) \asymp d^n(\mathcal{K})_Y = \inf_{\operatorname{codim}(V)=n} \sup_{f \in \mathcal{K} \cap V} \|f\|_Y$

- Computing Gelfand widths of a model class could tell us whether the model class is reasonable
 - However, determining the Gelfand width does not constitute an algorithm

Cambridge 2016 – p. 14/34

Gelfand Widths

Cambridge 2016 – p. 15/34

Sparsity

- Let \mathcal{D} be a dictionary of functions mapping $[0,1]^D \mapsto X$
- Typical examples: \mathcal{D} is a basis or frame
- Define: $\Sigma_m := \{S : S = \sum_{g \in \Lambda} c_g g, \Lambda \subset \mathcal{D}, \#(\Lambda) \le m\}$
- The elements in Σ_m are said to be m sparse
- Sparsity is too restrictive to be a good model class and should be replaced by compressibility

•
$$\sigma_m(F)_Y := \inf_{S \in \Sigma_m} \|F - S\|_Y$$

- $\mathcal{A}^{\alpha} := \{F : \sigma_m(F)_Y \leq Cm^{-\alpha}\}, |f|_{\mathcal{A}^{\alpha}} \text{ is smallest } C$
- \mathcal{A}^{α} model class of compressible functions of order α
- Y Hilbert space, $\mathcal{D} = \{\psi_j\}$ basis $F = \sum_{j=1}^{\infty} a_j(F)\psi_j$
- $F \in \mathcal{A}^{\alpha}$ if and only if $|a_j^*(F)| \leq M j^{-\alpha 1/2}$

Cambridge 2016 – p. 16/34

Compressed Sensing

- Developed for capturing sparse vectors in $x \in \mathbb{R}^D$
 - Sparsity: x has at most m nonzero entries $m \ll D$
 - Sample is inner product $\nu \cdot x$ where $\nu \in \mathbb{R}^D$
 - We can view x as the linear function $F_x(y) := x \cdot y$
 - Then a sample is the point evaluation of F_x
 - The *n* samples represented by a $n \times D$ matrix Φ
- Two Chapters
 - 1970's: Functional Analysts show that there exists $(n \simeq m \log D)$ samples which identify every sparse vector Kashin, Gluskin, Johnson, Lindenstrauss
 - 2000's: It is shown that the sampling measurements can be detangled and the sparse vector identified through ℓ_1 minimization: Donoho, Candes, Tao

Cambridge 2016 – p. 17/34

Remarks on CS

- Optimal matrices are random, e.g. a $n \times D$ Bernoulli matrix with ± 1 entries with sign selected by coin flips
 - However, there is no easy check whether a given matrix is optimal (sufficient condition is RIP)
 - Optimal Algorithms for Sparse: Random Sampling followed by l₁ minimization decoding - (can also use Orthogonal Matching Pursuit to decode)
 - Optimality proved by Gelfand widths
- Major question: optimal deterministic constructions
 - Projective geometry, number theory, combinatorics:Bourgain+, Calderbank+, D.
- Compressed Sensing generalizes to infinite dimensional settings: Adcock-Hansen + and compressible signals Cohen-Dahmen-D

Cambridge 2016 – p. 18/34

Sparsity/Compressibility in practice

- Adcock-Bastounis-Hansen-Roman call into question standard sparsity
- How can one be sure in practice?
- Situation is better in PDEs where one can prove regularity of solution
 - Return to the solution map *F* for parametric elliptic problems
 - Cohen-D-Schwab If $(\|\psi_j\|_{L_{\infty}(\Omega)}) \in \ell_p$, p < 1 then

$$F(y) = \sum_{\nu} u_{\nu} y^{\nu}$$

- $(\|u_{\nu}\|_X) \in \ell_p$
- $\sup_{y \in [0,1]^{\mathbb{N}}} \|F(y) \sum_{\nu \in \Lambda} u_{\nu} y^{\nu}\|_X \le C n^{-1/p-1}, \, \#(\Lambda) \le n$
- Compressibility proven

Cambridge 2016 – p. 19/34

Fourier +

- Suppose we wish to recover a sparse Fourier polynomial $F = \sum_{j \in \Lambda} c_j e^{ijx}$, $\Lambda \subset \Gamma$, $\#(\Gamma) = D$
- Take x_i , i = 1, ..., n random with respect to uniform measure
- Long history: Candes, Tao, Vershynin, Rudelson, Rauhut,...
- Best result: Sufficient to have $n \ge Cs(\log s)^2(\log D)$ measurements Chkifa, Webster,...
- Extends to general orthogonal systems ψ_j with $\|\psi_j\|_{L_{\infty}(\Omega)} \leq M$
- Extends to HD with some care
- Does not extend to wavelets as such (shrinking support)

Cambridge 2016 – p. 20/34

Variable Reduction Model Classes

- A common assumption in treating high dimensional problems is that not all variables are equally important
- Algorithms identify the important variables and use approximation techniques for low dimension once found
- Simplest example: $F(x_1, \ldots, x_D) = g(x_{j_1}, \ldots, x_{j_d})$, where $g \in C^s$ with s, j_1, \ldots, j_d and d not known.
- The point clouds in Query Algorithms have two tasks:
 - Determine change coordinates j_1, \ldots, j_d
 - Give a uniform grid with spacing $h \simeq n^{-1/d}$ for each d dimensional space spanned by a possible j_1, \ldots, j_d
- Such point clouds are constructed using Hashing

Hashing

- We create a family \mathcal{A} of partitions $A = (A_1, \dots, A_d)$ of $\{1, \dots, D\}$
 - Given any j_1, \ldots, j_d there is one $A \in \mathcal{A}$ such that each j_i appears in exactly one set A_k of A - when d = 2 just take binary partitions
- With Hashing we can construct $\mathcal{P} \subset [0, 1]^D$ such that

Projection Property: For any *d* dimensional coordinate subspace *V* of \mathbb{R}^D , the projection of \mathcal{P} onto $V \cap [0, 1]^D$ gives a uniform grid of spacing *h*

• With Hashing we can create point clouds \mathcal{A} to determine the change coordinates j_1, \ldots, j_d

• Certifiable Optimal Algorithm (D-Petrova-Wojtaszczyk) With *n* queries we can appproximate *F* to accuracy $C(d, s)(\log D)n^{-s/d}$

More General Anisotropy

- Anisotropic smoothness spaces: $\overline{s} = (s_1, \ldots, s_d)$
- The space $W^{\overline{s}}(L_p)$ consist of all $F \in L_p[0,1]^D$ such that $\|D_{x_j}^{s_j}F\|_{L_p} \leq 1, j = 1, \dots, D$
 - $S := g(\bar{s}) := \{\frac{1}{s_1} + \dots + \frac{1}{s_D}\}^{-1}$
 - With *n* queries, we can recover all functions in $W^{\bar{s}}(L_p)$ in the $L_p[0,1]^D$ norm with accuracy Cn^{-S}
 - For example, if $p = \infty$ it is enough to take point sample on an anisotropic grid
 - Example $\bar{s} = (2,1)$, S = 2/3

Cambridge 2016 – p. 23/34

$\bar{s} = (2, 1), D = 2$

Cambridge 2016 – p. 24/34

General Anisotropic Spaces

• For
$$S > 0$$
, $W^S(L_p) := \bigcup_{g(\bar{s})=S} W^{\bar{s}}(L_p)$

- Do not know the coordinates of anisotropy
- Where to query to optimally recover $W^{S}(L_{p}[0,1]^{D})$?
 - In the case $p = \infty$ one query set is sampling on sparse grids?
 - Given $n = 2^k$, write $k = k_1 + k_2 + \cdots + k_D$
 - Take the with spacing $2^{-k_1} \times \cdots \times 2^{-k_D}$
 - Sparse Grid: union $\simeq n(logn)^{D-1}$ points
 - Sparse grid sampling gives error $C(D,s)(\frac{\log n)^{D-1}}{n})^S$ for the above spaces $W^S(L_\infty[0,1]^D)$
 - Not known if this is optimal (a question of logarithms)
 - Note that the case there are d nonzero s_i and all equal s we arrive at our original exampleion $\frac{1}{2}$

Sparse Grids: $4 \times 16 \times 32$ **Grid**

Cambridge 2016 – p. 26/34

Data Assimilation

- The data $w = (w_1, \dots, w_n)$ comes from linear functionals applied to F: $w_i := \ell_i(F), i = 1, \dots, n$
- A Data Assimilation Algorithm is a mapping $A_n : w \mapsto A_n(w) \in Y$
- Let $\mathcal{K}_w := \{g \in \mathcal{K} : \ell_i(g) = w_i, i = 1, \dots, n\}$
 - Each $g \in \mathcal{K}_w$ is given the same approximant $A_n(w)$
 - Let $B(y(w), R(\mathcal{K}_w))$ be the smallest ball that contains \mathcal{K}_w the Chebyshev ball
 - The best algorithm: $A_n : w \mapsto y(w)$
 - Best algorithm has distortion $R(w) = R(\mathcal{K}_w)$
- Computing $R(\mathcal{K}_w)$ tells us the best performance
- Finding y(w) is a best algorithm

Numerically finding an element $\hat{y}(w)$ in $B(y(w), R(\mathcal{K}_w))$ is a near best algorithm
Cambridge 2016 – p. 27/34

Chebyshev Ball Graphic

Cambridge 2016 – p. 28/34

Data Assimilation

- Data Assimilation is a problem of Optimal Recovery
- Optimal Recovery results are usually for classical settings (smoothness spaces) and little is known in HD
- I want to put forward one general useful principle
- Usually hard to find Chebyshev ball for model class
- Especially in HD since we do not always have a good analytic description of the model class
- Frequently, all we know is that \mathcal{K} can be approximated by a certain sequence V_m , m = 1, 2, ... of m dimensional spaces to accuracy ϵ_m
- This leads us to replace \mathcal{K} by the somewhat larger set $\overline{\mathcal{K}} := \mathcal{K}(\epsilon_m, V_m) := \{f : \operatorname{dist}(f, V_m) \le \epsilon_m\}$
- We can determine optimal data assimilation for $\overline{\mathcal{K}}$ Cambridge 2016 p. 29/34

Assimilation for Approximation Sets

- To keep life simple assume $Y = \mathcal{H}$ is a Hilbert space
- Maday-Patera-Penn-Yano give the following algorithm A
 - Given $w = (w_1, \dots, w_n)$, consider $\mathcal{H}_w := \{u \in \mathcal{H} : \ell_j(u) = w_j, j = 1, \dots, n\}$
 - Determine (by least squares) $\bar{u}(w) \in \mathcal{H}_w$, $\bar{v}(w) \in V_m$ closest: $\|\bar{u}(w) - \bar{v}(w)\| = \operatorname{dist}(\mathcal{H}_w, V_m)$
 - Define $A(w) := \overline{u}(w)$
 - Their algorithm is optimal (Binev-Cohen-Dahmen-D-Petrova-Wojtaszczyk)

Cambridge 2016 - p. 30/34

Performance of Algorithm

- The interesting point about this setting is one can determine a priori the performance of the algorithm
- Let $\mathcal{N} \subset \mathcal{H}$ be the null space of the measurements

• Define
$$\mu(V_m, \mathcal{N}) := \sup_{\eta \in \mathcal{N}} \frac{\|\eta\|}{\operatorname{dist}(\eta, V)}$$

Performance:

$$R(\mathcal{H}_w)^2 = \mu(V_m, \mathcal{N})^2 \{\epsilon_m^2 - \|\bar{u}(w) - \bar{v}(w)\|_{\mathcal{H}}^2\}$$

• Note
$$\mu(V_m, \mathcal{N}) = \infty$$
 if $n < m$

 Similar results hold for general Banach spaces -D-Petrova-Wojtaszczyk

Cambridge 2016 – p. 31/34

Hilbert space geometry

Cambridge 2016 – p. 32/34

Computing μ

- The quantity $\mu(V_m, \mathcal{N})$ can usually be computed
- In the Hilbert space case it is the reciprocal of the angle between \mathcal{N} and V_m computed from singular values of a certain cross Grammian
- Here is another interesting example
 - $Y = C(\Omega), \ \ell_j(f) = f(x_j) \text{ with } x_j \in \Omega, \ j = 1, \dots, n$
 - $\mu(V_m, \mathcal{N}) = \sup_{v \in V_m} \frac{\|v\|_{C(\Omega)}}{\max_{1 \le i \le n} |v(x_i)|}$
 - So we recover f with these measurements to accuracy $\mu(V_m, \mathcal{N}) \operatorname{dist}(f, V_m)$
 - Data $f(x_i), x_i = i/n, i = 1, ..., n \ f \in C[0, 1]$, $V_m = \mathcal{P}_{m-1} \ \mu(V_m, W) \ge C\lambda^n, \lambda > 1, \ \mu(V_{\sqrt{n}}, W) \le C$
 - Two Errors: $\lambda^n E_n(f)$, m = n, $CE_{\sqrt{n}}(f)$, $m = \sqrt{n}$ do not interpolate!

Cambridge 2016 – p. 33/34

What Time Prevented

- Tensors
 - the Tensor zoo
 - Concentrated on algebraic aspects not query/assimilation Hackbusch, Grasedyck
 - some impressive applications Griebel, Schneider, ...
 - Sparse grids, Smolyak representation, discrepancy theory, quasi-Monte Carlo
- High dimensional polynomial interpolation/approximation
 - Lower sets, Leja points, Smolyak multi-scale
- Stochastic setting
 - Outstanding results for sparsity with undersampling
 - Donoho, Candes, Wainwright, Buhlmann, ...
- More detail in the above settings

Cambridge 2016 – p. 34/34