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Challenging World Problems
-

# Some of the most pressing scientific problems
challenge our computational ability

Atmospheric modeling: predicting climate change
Monitoring threat activities

Contaminant transport

Optimal engineering design

Medical diagnostics

Modeling the internet

Option pricing, bond valuation
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Mathematical/Computational Challenge
-

#® One common characteristic of these problems is they
iInvolve processes with many variables or parameters

o Mathematically this means we are faced with
numerically approximating a high dimensional function
s F:[0,1]P = X
s X a Banach space (often just Ik or IR"™)
s D large and possibly infinite
s Typical Computational Tasks

s Create an approximation F' to
s Evaluate some quantity of interest: Q(F)

s () Is some linear or nonlinear functional, for
example

- Q(F) Is a high dimensional integral of F J
- Q(F) is the max or min of F
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Evaluating Algorithms
-

# To have a meaningful discussion of the quality of
algorithms one needs

s a norm on functions to measure error || - || = || - ||y
s Typically Y is an L, space or uniform norm (p = oo)
s the assumptions made on F

# We view the assumptions we make about F' as placing
F'in a model class /C which is a compact subset of V'

s In numerical analysis of the last century model
classes were almost exclusively smoothness spaces
- how many derivatives does F have

s Statistical model classes place restrictions on the
regression function or the probability distribution

s In Signal/lmage Processing conditions on the J
Fourier Transform of F' - e.g. band limited
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Bad News
.

o Classical model classes based solely on smoothness o
F' are not sufficient in high dimensions

s Suppose the assumption is that /' is real valued and
has smoothness (of order s)
s Approximation theory tells us with » computations

we can only capture F to accuracy C(D, s)n /P
where D is the number of variables

s When D is large than s must also be very large to
guarantee any reasonable accuracy

s But we have no control over s which is inherent in
the real world problem

s SO0 conventional assumptions on F' and
conventional numerical methods will not work

# Also beware that C'(D, s) grows exponentially with D J
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Example (Novak-Wozniakowski)
-

To drive home the debilitating effect of high dimensions
consider the following example

Q:=[0,1”, X=R, K:={F: |D'F|. <1, W}
Any algorithm which computes for each £ € £ an
approximation 7' to accuracy 1/2 in L., will need at
least 2”/2 FLOPS

So if D = 100, we would need at least 2°" = 10
computations to achieve even the coarsest resolution

This phenomenon is referred to as The Curse of
Dimensionality

The usual definition of the Curse is polynomial in d
versus exponential in ¢ growth in computational cost

Real question is whether an acceptable error tolerance
can be reached in alloted computational time, 0.~ . 22y



o Conventional thought is that most real world HD

The Remedy
-

functions do not suffer the curse

# Classical smoothness models is not the right model
-need new models

o

Sparsity : F'is a sum of a small number of functions
from a fixed basis/frame/dictionary

Anisotropy/Variable Reduction: not all variables are
equally important - get rid of the weak ones

Tensor structures: variable separability

Superposition: F'is a composition of functions of few
variables - Hilbert’s 13-th problem

Many new approaches based on these ideas:
Manifold Learning; Laplacians on Graphs; Sparse
Grids; Sensitivity Analysis; ANOVA Decompositions; J

Tensor Formats; Discrepancy Camhridaa 2018 — n 7/24



Numerical Algorithms

-

# Let us turn now to constructing numerical algorithms in
HD -such algorithms depend on the information we are
given about F

o Setting |: Query Algorithms: We can ask questions
about 7 in the form of Queries

s A query is the application of a linear functional to F
s Examples: Point evaluation or weighted integrals

s Given that F € I and a query budget »n - where
should we query to best reconstruct F

o Setting II: Data Assimilation: We cannot ask questions
but rather are given data in the form of some
information about F'? J

s Given that F' € IC and given the data how can we
best reconstruct F Cambridae 2018 — n 8/24



Numerical Goals

Determine performance limits for the model class
Does it break the curse of dimensionality?

Certifiability of the performance of the proposed
algorithm

Rate-distortion guarantees
Is the proposed algorithm optimal/ near optimal?

|
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General complexity bound: Entropy

# There is a general criteria to see whether a model class

-

IC is HD friendly for computation

# Itis given by the Kolmogorov metric entropy of K

o

Given ¢ > 0: How many balls of radius ¢ in Y do we
need to cover K?

N((K)y denotes the smallest number

s H.(K)y :=log, N.(K)y Kolmogorov entropy

any numerical method which captures each F' € K to
accuracy ¢ will need at least H.(K)y computations

So if the entropy of K is not reasonable this is not a
useful model class

For example: This is how to prove the
Novak-Wozniakowski result J
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Covering

|
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Covering
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An Example: Parametric PDEs
-

() ¢ IR domain and A is a collection of diffusion
coefficients « that satisfy the Uniform Ellipticity
Assumption: 0<r <a(x) <R, x€f)

u, solution to the elliptic problem

(%) —div(a(z)Vue(x)) = f(z), z €,
Ua(aj) = 0, x € 0f)

a(z,y) = a(x) + > 2 yi(x), yj € [1,1], j=1,2,...
F(y) =uqy F:[-1,1V =X, X:=H} D=oc

I is an on line method for computing F(y) = u,,), Yy

y)?

|
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Query Algorithms
-

A query algorithm extracts information ¢, (F),... 0, (F)
and creates an approximation A, (F) € Y to F' using
only the extracted data and knowledge F' € IC

The minimal distortion in query algorithms is

on(K) :=inf sup ||[F — An(F)||y
An Fek

If no restrictions are imposed on the queries the optimal
performance is given by the Gelfand width 4" (C)y

0n,(IC) < d"(K)y = inf sup || f
k)= ()= int s |fly

Computing Gelfand widths of a model class could tell us
whether the model class is reasonable

s However, determining the Gelfand width does not
constitute an algorithm J
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Gelfand Widths
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°

Sparsity
Let D be a dictionary of functions mapping [0, 1]” + X T
Typical examples: D is a basis or frame

Define: X, :={S5: S=)_ crc9, ACD,#(A) <m}

The elements in ¥, are said to be m sparse

Sparsity is too restrictive to be a good model class and
should be replaced by compressibility

o Om(F)Y = infSEZm HF — SHY
o AY:={F: 0,(F)y <COm=*},|f| 4~ is smallest C
A“ model class of compressible functions of order «

Y Hiloert space, D = {1} basis ' = > " a;(F)i;
F e A”if and only if [af (F)| < Mj—~ 1/ |
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Compressed Sensing

-

» Developed for capturing sparse vectors in = € R”
s Sparsity: » has at most m nonzero entries m << D

s Sample is inner product v - = where v ¢ R”

» We can view z as the linear function F,(y) .=z -y
s Then a sample is the point evaluation of F,

s The n samples represented by a n x D matrix

o Two Chapters

s 1970’'s: Functional Analysts show that there exists
(n =< mlog D) samples which identify every sparse
vector Kashin, Gluskin, Johnson, Lindenstrauss

s 2000’s: It is shown that the sampling measurements
can be detangled and the sparse vector identified
through /1 minimization: Donoho, Candes, Tao J
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Remarks on CS

-

o Optimal matrices are random, e.g. a n x D Bernoulli
matrix with +1 entries with sign selected by coin flips

» However, there is no easy check whether a given
maitrix is optimal (sufficient condition is RIP)

s Optimal Algorithms for Sparse: Random Sampling
followed by /; minimization decoding - (can also use
Orthogonal Matching Pursuit to decode)

» Optimality proved by Gelfand widths

o Major question: optimal deterministic constructions

» Projective geometry, number theory,
combinatorics:Bourgain+, Calderbank+, D.

#® Compressed Sensing generalizes to infinite
dimensional settings: Adcock-Hansen + and J
compressible signals Cohen-Dahmen-D
Cambridae 2016 — n 18/R4



Sparsity/Compressibility in practice

# Adcock-Bastounis-Hansen-Roman call into question T
standard sparsity

# How can one be sure in practice?

o Situation is better in PDEs where one can prove
regularity of solution

» Return to the solution map F' for parametric elliptic
problems

» Cohen-D-Schwab If (||v;]|1_ () € £, p < 1 then
Fy) =>_, wy”

s (lullx) €
s swp [[F(y) =Sy’ llx < Cn L g(8) <

yel0, 1] veA J
s Compressibility proven
Cambridae 2016 — n 19/R4



Fourier +

-

Suppose we wish to recover a sparse Fourier
polynomial F' = %"\ c;e, A C T, #(I') = D

Take z;, 7 = 1,....n random with respect to uniform
measure

Long history: Candes, Tao, Vershynin, Rudelson,
Rauhut,...

Best result: Sufficient to have n > C's(log s)*(log D)
measurements Chkifa, Webster,...

Extends to general orthogonal systems v); with
1Yl <M

Extends to HD with some care
Does not extend to wavelets as such (shrinking support)J
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Variable Reduction Model Classes
-

# A common assumption in treating high dimensional
problems is that not all variables are equally important

o Algorithms identify the important variables and use
approximation techniques for low dimension once found

® Simplest example: F(zy,...,xp) = g(xj,,...,x;,), where
g € C*with s, j1,..., 74 and d not known.

# The point clouds in Query Algorithms have two tasks:
» Determine change coordinates ji, ..., j4

s Give a uniform grid with spacing 1 = n~'/? for each d
dimensional space spanned by a possible ji,.... j4

# Such point clouds are constructed using Hashing

|

Cambridae 2016 — n ?21/R4



Hashing
o

We create a family A of partitions A = (A;,..., A;) O
{1,...,D}
s Givenany ji,...,j;thereis one A € A such that

each j; appears in exactly one set A, of A - when
d = 2 just take binary partitions

With Hashing we can construct 7 ¢ [0, 1]” such that

Projection Property: For any d dimensional coordinate

subspace V of IR”, the projection of 7 onto V N [0, 1]”
gives a uniform grid of spacing /

With Hashing we can create point clouds A to
determine the change coordinates ji, ..., j4

Certifiable Optimal Algorithm (D-Petrova-Wojtaszczyk)
With n queries we can appproximate /' to accuracy J

—s/d
C'(d,s)(log D)n 5/ Cambridae 20168 — n 922/24



More General Anisotropy

# Anisotropic smoothness spaces: s = (s1,...,54) T

® The space W?(L,) consist of all 7 € L,[0,1]"” such that
1Dy Fllp, <1,7=1,...,D

s Si=g(s) = {L 44 L}

s With n queries, we can recover all functions in
W*(L,) in the L,[0,1]”) norm with accuracy C'n—"

s For example, if p = o it Is enough to take point
sample on an anisotropic grid

s Example s =(2,1), S =2/3

|
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General Anisotropic Spaces

-

» For S >0, W3(L U W3 (L

» Do not know the coordmates of anisotropy

» Where to query to optimally recover W°(L,[0,1]”)?
s Inthe case p = co one query set is sampling on
sparse grids?
s Givenn = 2" write k = k1 + ko +--- + kp
s Take the with spacing 2%t x ... x 27kp
s Sparse Grid: union = n(logn)” ! points

» Sparse grid sampling gives error C'(D, s)(k’g”g )?
for the above spaces W~ (L. [0, 1]7)
» Not known if this is optimal (a question of Iogarithms)J

» Note that the case there are d nonzero s, and all
aniial ¢ we arrivve at niir aricdinal avy aenmbacnt it @5/24




Sparse Grids: 4 x 16 x 32 Grid
-

|
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Data Assimilation

-

The data w = (wy, ..., w,) comes from linear functionals
appliedto F: w; :=(;(F), i =1,....n

A Data Assimilation Algorithm is a mapping

Apcw— Ap(w) €Y

Let Cp ={g e K:li(g) =w;, i1=1,...,n}

s Each g € IC,, Is given the same approximant A,,(w)

s Let B(y(w), R(ICy,)) be the smallest ball that contains
IC., - the Chebyshev ball

s The best algorithm: A, : w — y(w)
s Best algorithm has distortion k(w) = R(ICy,)

Computing R(/C,,) tells us the best performance
Finding y(w) is a best algorithm

Numerically finding an element ¢ (w) in B(y(w), R(K,)) J
IS a near best alaorithm Cambridae 2018 — n 27/4



Chebyshev Ball Graphic

|

Cambridae P0168 — n 28/R4



Data Assimilation

-

Data Assimilation is a problem of Optimal Recovery

Optimal Recovery results are usually for classical
settings (smoothness spaces) and little is known in HD

| want to put forward one general useful principle
Usually hard to find Chebyshev ball for model class

Especially in HD since we do not always have a good
analytic description of the model class

Frequently, all we know is that /C can be approximated
by a certain sequence V,,,, m = 1,2, ... of m dimensional
spaces to accuracy «,,

This leads us to replace K by the somewhat larger set
K = K(em, Vin) == {f : dist(f, Vin) < €m} J

We can determine optimal data assimilation for K
Cambridae 2016 — n 29/R4



Assimilation for Approximation Sets

# TJo keep lite simple assume Y = H is a Hilbert space T

o Maday-Patera-Penn-Yano give the following algorithm A

s Given w = (wy,...,w,), consider
Hy ={uveH: lj(u)=w;, j=1,...,n}

» Determine (by least squares ) u(w) € Hy, v(w) € Vp,
closest: ||u(w) — v(w)|| = dist(Hw, Vin)

s Define A(w) := u(w)

s Thelir algorithm is optimal
(Binev-Cohen-Dahmen-D-Petrova-Wojtaszczyk)

|
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Performance of Algorithm

-

The interesting point about this setting is one can
determine a priori the performance of the algorithm

Let NV € H be the null space of the measurements

Define  p(V,,, V) := sup — Ll

Performance:

Note ;(V,,,N) =0 if n <m

Similar results hold for general Banach spaces -
D-Petrova-Wojtaszczyk J
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Hilbert space geometry

|
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Computing /.
-

# In the Hilbert space case it is the reciprocal of the angle
between A and V,, computed from singular values of a
certain cross Grammian

# The quantity x(V;,, V') can usually be computed

# Here is another interesting example
o Y =CQ),0(f)=flzj)withz; € Q,j=1,...,n

» p(Vin,N) =sup,ey. maxl‘fjg?&xm

» So we recover / with these measurements to
accuracy u(V,,, N)dist(f, V)

e Data f(x;), x;, =i/n,e=1,....,n f e C|0,1],
Vin = Pm—1 t(Vin, W) > CX", XA > 1, M(V\/ﬁ, Ww)<dc

s Two Errors: \"E,(f), m=n, CFE 5(f), m=+/n J

do not interpolate!
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What Time Prevented
-

Tensors
o the Tensor zoo

» (Concentrated on algebraic aspects not
query/assimilation Hackbusch, Grasedyck

s some impressive applications Griebel, Schneider, ...

s Sparse grids, Smolyak representation, discrepancy
theory, quasi-Monte Carlo

High dimensional polynomial

interpolation/approximation

s Lower sets, Leja points, Smolyak multi-scale

Stochastic setting
s Qutstanding results for sparsity with undersampling
s Donoho, Candes, Wainwright, Buhlmann, ... J

More detalil in the above Se’[tings Cambridae 2018 — n R4/24
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