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Challenging World Problems

Some of the most pressing scientific problems
challenge our computational ability

Atmospheric modeling: predicting climate change

Monitoring threat activities

Contaminant transport

Optimal engineering design

Medical diagnostics

Modeling the internet

Option pricing, bond valuation

....
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The Mathematical/Computational Challenge

One common characteristic of these problems is they
involve processes with many variables or parameters

Mathematically this means we are faced with
numerically approximating a high dimensional function

F : [0, 1]D → X

X a Banach space (often just IR or IRm)

D large and possibly infinite

Typical Computational Tasks

Create an approximation F̂ to F
Evaluate some quantity of interest: Q(F )
Q is some linear or nonlinear functional, for
example
· Q(F ) is a high dimensional integral of F
· Q(F ) is the max or min of F

Cambridge 2016 – p. 3/34



Evaluating Algorithms

To have a meaningful discussion of the quality of
algorithms one needs

a norm on functions to measure error ‖ · ‖ = ‖ · ‖Y
Typically Y is an Lp space or uniform norm (p = ∞)

the assumptions made on F

We view the assumptions we make about F as placing
F in a model class K which is a compact subset of Y

In numerical analysis of the last century model
classes were almost exclusively smoothness spaces
- how many derivatives does F have

Statistical model classes place restrictions on the
regression function or the probability distribution

In Signal/Image Processing conditions on the
Fourier Transform of F - e.g. band limited
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Bad News

Classical model classes based solely on smoothness of
F are not sufficient in high dimensions

Suppose the assumption is that F is real valued and
has smoothness (of order s)

Approximation theory tells us with n computations

we can only capture F to accuracy C(D, s)n−s/D

where D is the number of variables
When D is large than s must also be very large to
guarantee any reasonable accuracy
But we have no control over s which is inherent in
the real world problem
So conventional assumptions on F and
conventional numerical methods will not work

Also beware that C(D, s) grows exponentially with D
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Example (Novak-Wozniakowski)

To drive home the debilitating effect of high dimensions
consider the following example

Ω := [0, 1]D, X = IR, K := {F : ‖DνF‖L∞
≤ 1, ∀ν}

Any algorithm which computes for each F ∈ K an

approximation F̂ to accuracy 1/2 in L∞ will need at

least 2D/2 FLOPS

So if D = 100, we would need at least 250 ≍ 1015

computations to achieve even the coarsest resolution

This phenomenon is referred to as The Curse of
Dimensionality

The usual definition of the Curse is polynomial in d
versus exponential in d growth in computational cost

Real question is whether an acceptable error tolerance
can be reached in alloted computational time
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The Remedy

Conventional thought is that most real world HD
functions do not suffer the curse

Classical smoothness models is not the right model
-need new models

Sparsity : F is a sum of a small number of functions
from a fixed basis/frame/dictionary

Anisotropy/Variable Reduction: not all variables are
equally important - get rid of the weak ones

Tensor structures: variable separability

Superposition: F is a composition of functions of few
variables - Hilbert’s 13-th problem

Many new approaches based on these ideas:
Manifold Learning; Laplacians on Graphs; Sparse
Grids; Sensitivity Analysis; ANOVA Decompositions;
Tensor Formats; Discrepancy
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Numerical Algorithms

Let us turn now to constructing numerical algorithms in
HD -such algorithms depend on the information we are
given about F

Setting I: Query Algorithms: We can ask questions
about F in the form of Queries

A query is the application of a linear functional to F
Examples: Point evaluation or weighted integrals

Given that F ∈ K and a query budget n - where
should we query to best reconstruct F

Setting II: Data Assimilation: We cannot ask questions
but rather are given data in the form of some
information about F?

Given that F ∈ K and given the data how can we
best reconstruct F Cambridge 2016 – p. 8/34



Numerical Goals

Determine performance limits for the model class

Does it break the curse of dimensionality?

Certifiability of the performance of the proposed
algorithm

Rate-distortion guarantees

Is the proposed algorithm optimal/ near optimal?
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General complexity bound: Entropy

There is a general criteria to see whether a model class
K is HD friendly for computation

It is given by the Kolmogorov metric entropy of K
Given ǫ > 0: How many balls of radius ǫ in Y do we
need to cover K?

Nǫ(K)Y denotes the smallest number

Hǫ(K)Y := log2Nǫ(K)Y Kolmogorov entropy

any numerical method which captures each F ∈ K to
accuracy ǫ will need at least Hǫ(K)Y computations

So if the entropy of K is not reasonable this is not a
useful model class

For example: This is how to prove the
Novak-Wozniakowski result
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Covering

Cambridge 2016 – p. 11/34



Covering
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An Example: Parametric PDEs

Ω ⊂ IRd domain and A is a collection of diffusion
coefficients a that satisfy the Uniform Ellipticity
Assumption: 0 < r ≤ a(x) ≤ R, x ∈ Ω

ua solution to the elliptic problem

(∗) − div(a(x)∇ua(x)) = f(x), x ∈ Ω,
ua(x) = 0, x ∈ ∂Ω

a(x, y) = ā(x) +
∑∞

j=1 yjψj(x), yj ∈ [−1, 1], j = 1, 2, . . .

F (y) = ua(y) F : [−1, 1]N 7→ X, X := H1
0 D = ∞

F̂ is an on line method for computing F (y) = ua(y), ∀y
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Query Algorithms

A query algorithm extracts information ℓ1(F ), . . . , ℓn(F )
and creates an approximation An(F ) ∈ Y to F using
only the extracted data and knowledge F ∈ K
The minimal distortion in query algorithms is

δn(K) := inf
An

sup
F∈K

‖F − An(F )‖Y

If no restrictions are imposed on the queries the optimal
performance is given by the Gelfand width dn(K)Y

δn(K) ≍ dn(K)Y = inf
codim(V )=n

sup
f∈K∩V

‖f‖Y

Computing Gelfand widths of a model class could tell us
whether the model class is reasonable

However, determining the Gelfand width does not
constitute an algorithm
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Gelfand Widths
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Sparsity

Let D be a dictionary of functions mapping [0, 1]D 7→ X

Typical examples: D is a basis or frame

Define: Σm := {S : S =
∑

g∈Λ cgg, Λ ⊂ D,#(Λ) ≤ m}

The elements in Σm are said to be m sparse

Sparsity is too restrictive to be a good model class and
should be replaced by compressibility

σm(F )Y := infS∈Σm
‖F − S‖Y

Aα := {F : σm(F )Y ≤ Cm−α}, |f |Aα is smallest C

Aα model class of compressible functions of order α

Y Hilbert space, D = {ψj} basis F =
∑∞

j=1 aj(F )ψj

F ∈ Aα if and only if |a∗j (F )| ≤Mj−α−1/2
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Compressed Sensing

Developed for capturing sparse vectors in x ∈ RD

Sparsity: x has at most m nonzero entries m << D

Sample is inner product ν · x where ν ∈ IRD

We can view x as the linear function Fx(y) := x · y
Then a sample is the point evaluation of Fx

The n samples represented by a n×D matrix Φ

Two Chapters

1970’s: Functional Analysts show that there exists
(n ≍ m logD) samples which identify every sparse
vector Kashin, Gluskin, Johnson, Lindenstrauss

2000’s: It is shown that the sampling measurements
can be detangled and the sparse vector identified
through ℓ1 minimization: Donoho, Candes, Tao
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Remarks on CS

Optimal matrices are random, e.g. a n×D Bernoulli
matrix with ±1 entries with sign selected by coin flips

However, there is no easy check whether a given
matrix is optimal (sufficient condition is RIP)

Optimal Algorithms for Sparse: Random Sampling
followed by ℓ1 minimization decoding - (can also use
Orthogonal Matching Pursuit to decode)

Optimality proved by Gelfand widths

Major question: optimal deterministic constructions

Projective geometry, number theory,
combinatorics:Bourgain+, Calderbank+, D.

Compressed Sensing generalizes to infinite
dimensional settings: Adcock-Hansen + and
compressible signals Cohen-Dahmen-D
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Sparsity/Compressibility in practice

Adcock-Bastounis-Hansen-Roman call into question
standard sparsity

How can one be sure in practice?

Situation is better in PDEs where one can prove
regularity of solution

Return to the solution map F for parametric elliptic
problems

Cohen-D-Schwab If (‖ψj‖L∞(Ω)) ∈ ℓp, p < 1 then

F (y) =
∑

ν uνy
ν

(‖uν‖X) ∈ ℓp

sup
y∈[0,1]IN

‖F (y)−
∑

ν∈Λ
uνy

ν‖X ≤ Cn−1/p−1, #(Λ) ≤ n

Compressibility proven
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Fourier +

Suppose we wish to recover a sparse Fourier

polynomial F =
∑

j∈Λ cje
ijx, Λ ⊂ Γ, #(Γ) = D

Take xi, i = 1, . . . , n random with respect to uniform
measure

Long history: Candes, Tao, Vershynin, Rudelson,
Rauhut,...

Best result: Sufficient to have n ≥ Cs(log s)2(logD)
measurements Chkifa, Webster,...

Extends to general orthogonal systems ψj with

‖ψj‖L∞(Ω) ≤M

Extends to HD with some care

Does not extend to wavelets as such (shrinking support)
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Variable Reduction Model Classes

A common assumption in treating high dimensional
problems is that not all variables are equally important

Algorithms identify the important variables and use
approximation techniques for low dimension once found

Simplest example: F (x1, . . . , xD) = g(xj1 , . . . , xjd), where
g ∈ Cs with s, j1, . . . , jd and d not known.

The point clouds in Query Algorithms have two tasks:

Determine change coordinates j1, . . . , jd

Give a uniform grid with spacing h ≍ n−1/d for each d
dimensional space spanned by a possible j1, . . . , jd

Such point clouds are constructed using Hashing
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Hashing

We create a family A of partitions A = (A1, . . . , Ad) of
{1, . . . , D}

Given any j1, . . . , jd there is one A ∈ A such that
each ji appears in exactly one set Ak of A - when
d = 2 just take binary partitions

With Hashing we can construct P ⊂ [0, 1]D such that

Projection Property: For any d dimensional coordinate

subspace V of IRD, the projection of P onto V ∩ [0, 1]D

gives a uniform grid of spacing h

With Hashing we can create point clouds A to
determine the change coordinates j1, . . . , jd

Certifiable Optimal Algorithm (D-Petrova-Wojtaszczyk)
With n queries we can appproximate F to accuracy

C(d, s)(logD)n−s/d
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More General Anisotropy

Anisotropic smoothness spaces: s̄ = (s1, . . . , sd)

The space W s̄(Lp) consist of all F ∈ Lp[0, 1]
D such that

‖Dsj
xj
F‖Lp

≤ 1, j = 1, . . . , D

S := g(s̄) := { 1
s1

+ · · · + 1
sD

}−1

With n queries, we can recover all functions in

W s̄(Lp) in the Lp[0, 1]
D) norm with accuracy Cn−S

For example, if p = ∞ it is enough to take point
sample on an anisotropic grid

Example s̄ = (2, 1), S = 2/3
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s̄ = (2, 1), D = 2
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General Anisotropic Spaces

For S > 0, WS(Lp) :=
⋃

g(s̄)=S

W s̄(Lp)

Do not know the coordinates of anisotropy

Where to query to optimally recover WS(Lp[0, 1]
D)?

In the case p = ∞ one query set is sampling on
sparse grids?

Given n = 2k, write k = k1 + k2 + · · · + kD
Take the with spacing 2−k1 × · · · × 2−kD

Sparse Grid: union ≍ n(logn)D−1 points

Sparse grid sampling gives error C(D, s)( logn)
D−1

n )S

for the above spaces WS(L∞[0, 1]D)

Not known if this is optimal (a question of logarithms)

Note that the case there are d nonzero si and all
equal s we arrive at our original example of functions
depending only on d variables. There we obtained a
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Sparse Grids: 4× 16× 32 Grid
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Data Assimilation

The data w = (w1, . . . , wn) comes from linear functionals
applied to F : wi := ℓi(F ), i = 1, . . . , n

A Data Assimilation Algorithm is a mapping
An : w 7→ An(w) ∈ Y

Let Kw := {g ∈ K : ℓi(g) = wi, i = 1, . . . , n}
Each g ∈ Kw is given the same approximant An(w)

Let B(y(w), R(Kw)) be the smallest ball that contains
Kw - the Chebyshev ball

The best algorithm: An : w 7→ y(w)
Best algorithm has distortion R(w) = R(Kw)

Computing R(Kw) tells us the best performance

Finding y(w) is a best algorithm

Numerically finding an element ŷ(w) in B(y(w), R(Kw))
is a near best algorithm Cambridge 2016 – p. 27/34



Chebyshev Ball Graphic
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Data Assimilation

Data Assimilation is a problem of Optimal Recovery

Optimal Recovery results are usually for classical
settings (smoothness spaces) and little is known in HD

I want to put forward one general useful principle

Usually hard to find Chebyshev ball for model class

Especially in HD since we do not always have a good
analytic description of the model class

Frequently, all we know is that K can be approximated
by a certain sequence Vm, m = 1, 2, . . . of m dimensional
spaces to accuracy ǫm

This leads us to replace K by the somewhat larger set

K̄ := K(ǫm, Vm) := {f : dist(f, Vm) ≤ ǫm}
We can determine optimal data assimilation for K̄
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Assimilation for Approximation Sets

To keep life simple assume Y = H is a Hilbert space

Maday-Patera-Penn-Yano give the following algorithm A

Given w = (w1, . . . , wn), consider
Hw := {u ∈ H : ℓj(u) = wj , j = 1, . . . , n}
Determine (by least squares ) ū(w) ∈ Hw, v̄(w) ∈ Vm
closest: ‖ū(w)− v̄(w)‖ = dist(Hw, Vm)

Define A(w) := ū(w)

Their algorithm is optimal
(Binev-Cohen-Dahmen-D-Petrova-Wojtaszczyk)
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Performance of Algorithm

The interesting point about this setting is one can
determine a priori the performance of the algorithm

Let N ⊂ H be the null space of the measurements

Define µ(Vm,N ) := sup
η∈N

‖η‖
dist(η, V )

Performance:

R(Hw)
2 = µ(Vm,N )2{ǫ2m − ‖ū(w)− v̄(w)‖2H}

Note µ(Vm,N ) = ∞ if n < m

Similar results hold for general Banach spaces -
D-Petrova-Wojtaszczyk
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Hilbert space geometry
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Computing µ

The quantity µ(Vm,N ) can usually be computed

In the Hilbert space case it is the reciprocal of the angle
between N and Vm computed from singular values of a
certain cross Grammian

Here is another interesting example

Y = C(Ω), ℓj(f) = f(xj) with xj ∈ Ω, j = 1, . . . , n

µ(Vm,N ) = supv∈Vm

‖v‖C(Ω)

max1≤i≤n |v(xi)|
So we recover f with these measurements to
accuracy µ(Vm,N )dist(f, Vm)

Data f(xi), xi = i/n, i = 1, . . . , n f ∈ C[0, 1] ,
Vm = Pm−1 µ(Vm,W ) ≥ Cλn, λ > 1, µ(V√n,W ) ≤ C

Two Errors: λnEn(f), m = n, CE√
n(f), m =

√
n

do not interpolate!
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What Time Prevented

Tensors

the Tensor zoo

Concentrated on algebraic aspects not
query/assimilation Hackbusch, Grasedyck

some impressive applications Griebel, Schneider, ...

Sparse grids, Smolyak representation, discrepancy
theory, quasi-Monte Carlo

High dimensional polynomial
interpolation/approximation

Lower sets, Leja points, Smolyak multi-scale

Stochastic setting

Outstanding results for sparsity with undersampling

Donoho, Candes, Wainwright, Buhlmann, ...

More detail in the above settings Cambridge 2016 – p. 34/34
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