Strategies for Capturing High Dimensional Functions

Ronald DeVore

Texas A\& M University

Challenging World Problems

- Some of the most pressing scientific problems challenge our computational ability
- Atmospheric modeling: predicting climate change
- Monitoring threat activities
- Contaminant transport
- Optimal engineering design
- Medical diagnostics
- Modeling the internet
- Option pricing, bond valuation
-

Mathematical/Computational Challenge

- One common characteristic of these problems is they involve processes with many variables or parameters
- Mathematically this means we are faced with numerically approximating a high dimensional function
- $F:[0,1]^{D} \rightarrow X$
- X a Banach space (often just \mathbb{R} or \mathbb{R}^{m})
- D large and possibly infinite
- Typical Computational Tasks
- Create an approximation \hat{F} to F
- Evaluate some quantity of interest: $Q(F)$
- Q is some linear or nonlinear functional, for example
- $Q(F)$ is a high dimensional integral of F
- $Q(F)$ is the max or min of F

Evaluating Algorithms

- To have a meaningful discussion of the quality of algorithms one needs
- a norm on functions to measure error $\|\cdot\|=\|\cdot\|_{Y}$
- Typically Y is an L_{p} space or uniform norm ($p=\infty$)
- the assumptions made on F
- We view the assumptions we make about F as placing F in a model class \mathcal{K} which is a compact subset of Y
- In numerical analysis of the last century model classes were almost exclusively smoothness spaces
- how many derivatives does F have
- Statistical model classes place restrictions on the regression function or the probability distribution
- In Signal/Image Processing conditions on the Fourier Transform of $F-$ e.g. band limited

Bad News

- Classical model classes based solely on smoothness of F are not sufficient in high dimensions
- Suppose the assumption is that F is real valued and has smoothness (of order s)
- Approximation theory tells us with n computations we can only capture F to accuracy $C(D, s) n^{-s / D}$ where D is the number of variables
- When D is large than s must also be very large to guarantee any reasonable accuracy
- But we have no control over s which is inherent in the real world problem
- So conventional assumptions on F and conventional numerical methods will not work
- Also beware that $C(D, s)$ grows exponentially with D

Example (Novak-Wozniakowski)

- To drive home the debilitating effect of high dimensions consider the following example
$\Omega:=[0,1]^{D}, \quad X=\mathbb{R}, \quad \mathcal{K}:=\left\{F:\left\|D^{\nu} F\right\|_{L_{\infty}} \leq 1, \forall \nu\right\}$
- Any algorithm which computes for each $F \in \mathcal{K}$ an approximation \hat{F} to accuracy $1 / 2$ in L_{∞} will need at least $2^{D / 2}$ FLOPS
- So if $D=100$, we would need at least $2^{50} \asymp 10^{15}$ computations to achieve even the coarsest resolution
- This phenomenon is referred to as The Curse of Dimensionality
- The usual definition of the Curse is polynomial in d versus exponential in d growth in computational cost
- Real question is whether an acceptable error tolerance

The Remedy

- Conventional thought is that most real world HD functions do not suffer the curse
- Classical smoothness models is not the right model -need new models
- Sparsity : F is a sum of a small number of functions from a fixed basis/frame/dictionary
- Anisotropy/Variable Reduction: not all variables are equally important - get rid of the weak ones
- Tensor structures: variable separability
- Superposition: F is a composition of functions of few variables - Hilbert's 13-th problem
- Many new approaches based on these ideas: Manifold Learning; Laplacians on Graphs; Sparse Grids; Sensitivity Analysis; ANOVA Decompositions; Tensor Formats; Discrepancy

Numerical Algorithms

- Let us turn now to constructing numerical algorithms in HD -such algorithms depend on the information we are given about F
- Setting I: Query Algorithms: We can ask questions about F in the form of Queries
- A query is the application of a linear functional to F - Examples: Point evaluation or weighted integrals
- Given that $F \in \mathcal{K}$ and a query budget n - where should we query to best reconstruct F
- Setting II: Data Assimilation: We cannot ask questions but rather are given data in the form of some information about F ?
- Given that $F \in \mathcal{K}$ and given the data how can we best reconstruct F

Numerical Goals

- Determine performance limits for the model class
- Does it break the curse of dimensionality?
- Certifiability of the performance of the proposed algorithm
- Rate-distortion guarantees
- Is the proposed algorithm optimal/ near optimal?

General complexity bound: Entropy

- There is a general criteria to see whether a model class \mathcal{K} is HD friendly for computation
- It is given by the Kolmogorov metric entropy of \mathcal{K}
- Given $\epsilon>0$: How many balls of radius ϵ in Y do we need to cover \mathcal{K} ?
- $N_{\epsilon}(\mathcal{K})_{Y}$ denotes the smallest number
- $H_{\epsilon}(K)_{Y}:=\log _{2} N_{\epsilon}(K)_{Y}$ Kolmogorov entropy
- any numerical method which captures each $F \in \mathcal{K}$ to accuracy ϵ will need at least $H_{\epsilon}(\mathcal{K})_{Y}$ computations
- So if the entropy of \mathcal{K} is not reasonable this is not a useful model class
- For example: This is how to prove the Novak-Wozniakowski result

Covering

Cambridae 2016 - D. 11/34

Covering

Cambridae 2016 - D. 12/34

An Example: Parametric PDEs

- $\Omega \subset \mathbb{R}^{d}$ domain and \mathcal{A} is a collection of diffusion coefficients a that satisfy the Uniform Ellipticity Assumption: $0<r \leq a(x) \leq R, \quad x \in \Omega$
- u_{a} solution to the elliptic problem

$$
\text { (*) } \begin{aligned}
-\operatorname{div}\left(a(x) \nabla u_{a}(x)\right) & =f(x), & & x \in \Omega, \\
u_{a}(x) & =0, & & x \in \partial \Omega
\end{aligned}
$$

$a(x, y)=\bar{a}(x)+\sum_{j=1}^{\infty} y_{j} \psi_{j}(x), y_{j} \in[-1,1], j=1,2, \ldots$

$$
F(y)=u_{a(y)} \quad F:[-1,1]^{\mathcal{N}} \mapsto X, \quad X:=H_{0}^{1} \quad D=\infty
$$

\hat{F} is an on line method for computing $F(y)=u_{a(y)}, \forall y$

Query Algorithms

- A query algorithm extracts information $\ell_{1}(F), \ldots, \ell_{n}(F)$ and creates an approximation $A_{n}(F) \in Y$ to F using only the extracted data and knowledge $F \in \mathcal{K}$
- The minimal distortion in query algorithms is
$\delta_{n}(\mathcal{K}):=\inf _{A_{n}} \sup _{F \in \mathcal{K}}\left\|F-A_{n}(F)\right\|_{Y}$
- If no restrictions are imposed on the queries the optimal performance is given by the Gelfand width $d^{n}(\mathcal{K})_{Y}$
$\delta_{n}(\mathcal{K}) \asymp d^{n}(\mathcal{K})_{Y}=\inf _{\operatorname{codim}(V)=n} \sup _{f \in \mathcal{K} \cap V}\|f\|_{Y}$
- Computing Gelfand widths of a model class could tell us whether the model class is reasonable
- However, determining the Gelfand width does not constitute an algorithm

Gelfand Widths

Cambridae 2016 - D. 15/34

Sparsity

- Let \mathcal{D} be a dictionary of functions mapping $[0,1]^{D} \mapsto X$
- Typical examples: \mathcal{D} is a basis or frame
- Define: $\Sigma_{m}:=\left\{S: S=\sum_{g \in \Lambda} c_{g} g, \Lambda \subset \mathcal{D}, \#(\Lambda) \leq m\right\}$
- The elements in Σ_{m} are said to be m sparse

Sparsity is too restrictive to be a good model class and should be replaced by compressibility

- $\sigma_{m}(F)_{Y}:=\inf _{S \in \Sigma_{m}}\|F-S\|_{Y}$
- $\mathcal{A}^{\alpha}:=\left\{F: \sigma_{m}(F)_{Y} \leq C m^{-\alpha}\right\},|f|_{\mathcal{A}^{\alpha}}$ is smallest C
- \mathcal{A}^{α} model class of compressible functions of order α
- Y Hilbert space, $\mathcal{D}=\left\{\psi_{j}\right\}$ basis $F=\sum_{j=1}^{\infty} a_{j}(F) \psi_{j}$
- $F \in \mathcal{A}^{\alpha}$ if and only if $\left|a_{j}^{*}(F)\right| \leq M j^{-\alpha-1 / 2}$

Compressed Sensing

- Developed for capturing sparse vectors in $x \in R^{D}$
- Sparsity: x has at most m nonzero entries $m \ll D$
- Sample is inner product $\nu \cdot x$ where $\nu \in \mathbb{R}^{D}$
- We can view x as the linear function $F_{x}(y):=x \cdot y$
- Then a sample is the point evaluation of F_{x}
- The n samples represented by a $n \times D$ matrix Φ
- Two Chapters
- 1970's: Functional Analysts show that there exists ($n \asymp m \log D$) samples which identify every sparse vector Kashin, Gluskin, Johnson, Lindenstrauss
- 2000's: It is shown that the sampling measurements can be detangled and the sparse vector identified through ℓ_{1} minimization: Donoho, Candes, Tao

Remarks on CS

- Optimal matrices are random, e.g. a $n \times D$ Bernoulli matrix with ± 1 entries with sign selected by coin flips
- However, there is no easy check whether a given matrix is optimal (sufficient condition is RIP)
- Optimal Algorithms for Sparse: Random Sampling followed by ℓ_{1} minimization decoding - (can also use Orthogonal Matching Pursuit to decode)
- Optimality proved by Gelfand widths
- Major question: optimal deterministic constructions
- Projective geometry, number theory, combinatorics:Bourgain+, Calderbank+, D.
- Compressed Sensing generalizes to infinite dimensional settings: Adcock-Hansen + and compressible signals Cohen-Dahmen-D

Sparsity/Compressibility in practice

- Adcock-Bastounis-Hansen-Roman call into question standard sparsity
- How can one be sure in practice?
- Situation is better in PDEs where one can prove regularity of solution
- Return to the solution map F for parametric elliptic problems
- Cohen-D-Schwab If $\left(\left\|\psi_{j}\right\|_{L_{\infty}(\Omega)}\right) \in \ell_{p}, p<1$ then

$$
F(y)=\sum_{\nu} u_{\nu} y^{\nu}
$$

- $\left(\left\|u_{\nu}\right\|_{X}\right) \in \ell_{p}$
- $\sup _{y \in[0,1]^{\mathbb{N}}}\left\|F(y)-\sum_{\nu \in \Lambda} u_{\nu} y^{\nu}\right\|_{X} \leq C n^{-1 / p-1}, \#(\Lambda) \leq n$
- Compressibility proven

Fourier +

- Suppose we wish to recover a sparse Fourier polynomial $F=\sum_{j \in \Lambda} c_{j} e^{i j x}, \Lambda \subset \Gamma, \#(\Gamma)=D$
- Take $x_{i}, i=1, \ldots, n$ random with respect to uniform measure
- Long history: Candes, Tao, Vershynin, Rudelson, Rauhut,...
- Best result: Sufficient to have $n \geq C s(\log s)^{2}(\log D)$ measurements Chkifa, Webster,...
- Extends to general orthogonal systems ψ_{j} with
$\left\|\psi_{j}\right\|_{L_{\infty}(\Omega)} \leq M$
- Extends to HD with some care
- Does not extend to wavelets as such (shrinking support)

Variable Reduction Model Classes

- A common assumption in treating high dimensional problems is that not all variables are equally important
- Algorithms identify the important variables and use approximation techniques for low dimension once found
- Simplest example: $F\left(x_{1}, \ldots, x_{D}\right)=g\left(x_{j_{1}}, \ldots, x_{j_{d}}\right)$, where $g \in C^{s}$ with s, j_{1}, \ldots, j_{d} and d not known.
- The point clouds in Query Algorithms have two tasks:
- Determine change coordinates j_{1}, \ldots, j_{d}
- Give a uniform grid with spacing $h \asymp n^{-1 / d}$ for each d dimensional space spanned by a possible j_{1}, \ldots, j_{d}
- Such point clouds are constructed using Hashing

Hashing

- We create a family \mathcal{A} of partitions $A=\left(A_{1}, \ldots, A_{d}\right)$ of $\{1, \ldots, D\}$
- Given any j_{1}, \ldots, j_{d} there is one $A \in \mathcal{A}$ such that each j_{i} appears in exactly one set A_{k} of A - when $d=2$ just take binary partitions
- With Hashing we can construct $\mathcal{P} \subset[0,1]^{D}$ such that Projection Property: For any d dimensional coordinate subspace V of \mathbb{R}^{D}, the projection of \mathcal{P} onto $V \cap[0,1]^{D}$ gives a uniform grid of spacing h
- With Hashing we can create point clouds \mathcal{A} to determine the change coordinates j_{1}, \ldots, j_{d}
- Certifiable Optimal Algorithm (D-Petrova-Wojtaszczyk) With n queries we can appproximate F to accuracy $C(d, s)(\log D) n^{-s / d}$

More General Anisotropy

- Anisotropic smoothness spaces: $\bar{s}=\left(s_{1}, \ldots, s_{d}\right)$
- The space $W^{\bar{s}}\left(L_{p}\right)$ consist of all $F \in L_{p}[0,1]^{D}$ such that $\left\|D_{x_{j}}^{S_{j}} F\right\|_{L_{p}} \leq 1, j=1, \ldots, D$
- $S:=g(\bar{s}):=\left\{\frac{1}{s_{1}}+\cdots+\frac{1}{s_{D}}\right\}^{-1}$
- With n queries, we can recover all functions in $W^{\bar{s}}\left(L_{p}\right)$ in the $\left.L_{p}[0,1]^{D}\right)$ norm with accuracy $C n^{-S}$
- For example, if $p=\infty$ it is enough to take point sample on an anisotropic grid
- Example $\bar{s}=(2,1), S=2 / 3$
$\bar{s}=(2,1), D=2$

Cambridae 2016 - D. 24/34

General Anisotropic Spaces

- For $S>0, W^{S}\left(L_{p}\right):=\bigcup_{g(\bar{s})=S} W^{\bar{s}}\left(L_{p}\right)$
- Do not know the coordinates of anisotropy
- Where to query to optimally recover $W^{S}\left(L_{p}[0,1]^{D}\right)$?
- In the case $p=\infty$ one query set is sampling on sparse grids?
- Given $n=2^{k}$, write $k=k_{1}+k_{2}+\cdots+k_{D}$
- Take the with spacing $2^{-k_{1}} \times \cdots \times 2^{-k_{D}}$
- Sparse Grid: union $\asymp n(\log n)^{D-1}$ points
- Sparse grid sampling gives error $C(D, s)\left(\frac{\log n)^{D-1}}{n}\right)^{S}$ for the above spaces $W^{S}\left(L_{\infty}[0,1]^{D}\right)$
- Not known if this is optimal (a question of logarithms)
- Note that the case there are d nonzero s_{i} and all equal s we arrive at our orininal ex fampledoe fination $5 / 34$

Sparse Grids: $4 \times 16 \times 32$ Grid

Data Assimilation

- The data $w=\left(w_{1}, \ldots, w_{n}\right)$ comes from linear functionals applied to F : $w_{i}:=\ell_{i}(F), i=1, \ldots, n$
- A Data Assimilation Algorithm is a mapping
$A_{n}: w \mapsto A_{n}(w) \in Y$
Let $\mathcal{K}_{w}:=\left\{g \in \mathcal{K}: \ell_{i}(g)=w_{i}, i=1, \ldots, n\right\}$
- Each $g \in \mathcal{K}_{w}$ is given the same approximant $A_{n}(w)$
- Let $B\left(y(w), R\left(\mathcal{K}_{w}\right)\right)$ be the smallest ball that contains \mathcal{K}_{w} - the Chebyshev ball
- The best algorithm: $A_{n}: w \mapsto y(w)$
- Best algorithm has distortion $R(w)=R\left(\mathcal{K}_{w}\right)$
- Computing $R\left(\mathcal{K}_{w}\right)$ tells us the best performance
- Finding $y(w)$ is a best algorithm
- Numerically finding an element $\hat{y}(w)$ in $B\left(y(w), R\left(\mathcal{K}_{w}\right)\right)$ is a near best algorithm

Chebyshev Ball Graphic

Cambridae 2016 - D. 28/34

Data Assimilation

- Data Assimilation is a problem of Optimal Recovery
- Optimal Recovery results are usually for classical settings (smoothness spaces) and little is known in HD I want to put forward one general useful principle
- Usually hard to find Chebyshev ball for model class Especially in HD since we do not always have a good analytic description of the model class
Frequently, all we know is that \mathcal{K} can be approximated by a certain sequence $V_{m}, m=1,2, \ldots$ of m dimensional spaces to accuracy ϵ_{m}
This leads us to replace \mathcal{K} by the somewhat larger set $\overline{\mathcal{K}}:=\mathcal{K}\left(\epsilon_{m}, V_{m}\right):=\left\{f: \operatorname{dist}\left(f, V_{m}\right) \leq \epsilon_{m}\right\}$
- We can determine optimal data assimilation for $\overline{\mathcal{K}}$

Assimilation for Approximation Sets

- To keep life simple assume $Y=\mathcal{H}$ is a Hilbert space
- Maday-Patera-Penn-Yano give the following algorithm A
- Given $w=\left(w_{1}, \ldots, w_{n}\right)$, consider $\mathcal{H}_{w}:=\left\{u \in \mathcal{H}: \ell_{j}(u)=w_{j}, j=1, \ldots, n\right\}$
- Determine (by least squares) $\bar{u}(w) \in \mathcal{H}_{w}, \bar{v}(w) \in V_{m}$ closest: $\|\bar{u}(w)-\bar{v}(w)\|=\operatorname{dist}\left(\mathcal{H}_{w}, V_{m}\right)$
- Define $A(w):=\bar{u}(w)$
- Their algorithm is optimal
(Binev-Cohen-Dahmen-D-Petrova-Wojtaszczyk)

Performance of Algorithm

- The interesting point about this setting is one can determine a priori the performance of the algorithm
- Let $\mathcal{N} \subset \mathcal{H}$ be the null space of the measurements
- Define

$$
\mu\left(V_{m}, \mathcal{N}\right):=\sup _{\eta \in \mathcal{N}} \frac{\|\eta\|}{\operatorname{dist}(\eta, V)}
$$

- Performance:

$$
R\left(\mathcal{H}_{w}\right)^{2}=\mu\left(V_{m}, \mathcal{N}\right)^{2}\left\{\epsilon_{m}^{2}-\|\bar{u}(w)-\bar{v}(w)\|_{\mathcal{H}}^{2}\right\}
$$

- Note $\mu\left(V_{m}, \mathcal{N}\right)=\infty$ if $n<m$
- Similar results hold for general Banach spaces -D-Petrova-Wojtaszczyk

Hilbert space geometry

Computing μ

- The quantity $\mu\left(V_{m}, \mathcal{N}\right)$ can usually be computed
- In the Hilbert space case it is the reciprocal of the angle between \mathcal{N} and V_{m} computed from singular values of a certain cross Grammian
- Here is another interesting example
- $Y=C(\Omega), \ell_{j}(f)=f\left(x_{j}\right)$ with $x_{j} \in \Omega, j=1, \ldots, n$
- $\mu\left(V_{m}, \mathcal{N}\right)=\sup _{v \in V_{m}} \frac{\|v\|_{C(\Omega)}}{\max _{1 \leq i \leq n}\left|v\left(x_{i}\right)\right|}$
- So we recover f with these measurements to accuracy $\mu\left(V_{m}, \mathcal{N}\right) \operatorname{dist}\left(f, V_{m}\right)$
- Data $f\left(x_{i}\right), x_{i}=i / n, i=1, \ldots, n f \in C[0,1]$, $V_{m}=\mathcal{P}_{m-1} \mu\left(V_{m}, W\right) \geq C \lambda^{n}, \lambda>1, \mu\left(V_{\sqrt{n}}, W\right) \leq C$
- Two Errors: $\lambda^{n} E_{n}(f), m=n, \quad C E_{\sqrt{n}}(f), m=\sqrt{n}$ do not interpolate!

What Time Prevented

- Tensors
- the Tensor zoo
- Concentrated on algebraic aspects not query/assimilation Hackbusch, Grasedyck
- some impressive applications Griebel, Schneider, ...
- Sparse grids, Smolyak representation, discrepancy theory, quasi-Monte Carlo
- High dimensional polynomial interpolation/approximation
- Lower sets, Leja points, Smolyak multi-scale
- Stochastic setting
- Outstanding results for sparsity with undersampling
- Donoho, Candes, Wainwright, Buhlmann, ...
- More detail in the above settings

