Pareto Explorer: A Global/Local Exploration Tool for Many Objective Optimization Problems

Dr. Oliver Schütze, Cinvestav-IPN
Glasgow, Sept. 17, 2015
Outline

Introduction
- Multi- and many objective optimization
- Background

Methods for the Treatment of M(a)OPs
- Pareto Tracer for MOPs
- Pareto Explorer for MaOPs

Application
- PE for laundry system
Multi-objective Optimization

Multi-objective Optimization Problem

\[
\min F = \begin{cases}
 f_1 : Q \subset \mathbb{R}^n \to \mathbb{R} \\
 \vdots \\
 f_k : Q \subset \mathbb{R}^n \to \mathbb{R}
\end{cases} \quad \text{(MOP)}
\]

Definition: \(x \in Q \) is Pareto optimal if there exists no point \(y \in Q \setminus \{x\} \) s.t. \(F(y) \leq F(x) \) and \(F(y) \neq F(x) \).

\(P_Q \) is a set of dimension \((k-1)\)

\(F(P_Q) = \text{image of } P_Q \) (\textit{Pareto front})
Optimality Conditions

Theorem ([Kuhn, Tucker, 1951])

Let x be a Pareto point of (MOP), then:

$$1,\ldots, k \geq 0: \sum_{i=1}^{k} a_i = 1 \quad \text{and} \quad \sum_{i=1}^{k} \nabla f_i(x) = 0 = J^T, \quad (C)$$

where

$$J = \begin{pmatrix} \nabla f_1(x)^T \\ \vdots \\ \nabla f_k(x)^T \end{pmatrix} \in \mathbb{R}^{k \times n}$$

denotes the Jacobian of F at x.

Remark α is orthogonal to the linearized Pareto front at $F(x)$

Definition If $x \in Q$ satisfies (C), then it is called a Karush Kuhn Tucker (KKT) point.
The Pareto Set is a Manifold

\[\tilde{F} : R^{n+k} \rightarrow R^{n+1} \]

\[\tilde{F}(x, \alpha) = \left(\sum_{i=1}^{k} \alpha_i \nabla f_i(x) \right) \]

\[\angle \sum_{i=1}^{k} \alpha_i - 1 \]

[Kuhn,Tucker 1951]

The Pareto set is contained in \(\tilde{F}^{-1}(0) \)

[Hillermeier 2001]

Pareto set: \((k-1)\)-dim manifold
Impact on Decision Making and Algorithm Design

Finite size approximation of the entire Pareto set/front: exponential growth in k ($N = m^{k-1}$)
Example: 3 points per dimension, $k=14 \rightarrow N = 3^{13} \approx 1,600,000$
Impact on Decision Making and Algorithm Design

Definition:
- $k \leq 3$ multi-objective optimization problem (MOP)
- $k > 3$ many objective optimization problem (MaOP)
Steering the Search in MOO

Given point $x \in R^n$, direction $v \in R^n$, step size $t \in R_+$. New candidate found via line search

$$x_{new} = x + tv$$

Then the according movement in objective space (for infinitesimal step sizes) is given by

$$Jv$$

“Proof”

$$\lim_{t \to \infty} \frac{f_i(x + tv) - f_i(x)}{t} = \langle \nabla f_i(x), v \rangle = (Jv)_i$$
Methods for the Treatment of M(a)OPs

Mathematical Programming Techniques
- Scalarization methods
- Descent methods
- Interactive methods

Set based methods
- Evolutionary strategies
- Subdivision techniques
- Cell mapping techniques

Continuation Methods
- Perform a movement along the Pareto set/front (done by MP and SON methods)
Scalarization Methods

Scalarization methods transform the given MOP into a ‘suitable’ SOP
→ one solution expected, according to the given setting

Examples:
• Weighted sum method
• ε-Constraint method
• Reference point methods
 • Normal boundary intersection (NBI)
 • Pascoletti-Serafini
 • ...

O. Schütze
Example: Reference Point Methods

If the Decision Maker has a rough idea about his/her product, one can look for the solution which is ‘closest’ to a given reference point Z (defined in objective space).

$$\min_x d(F(x), Z) \quad (*)$$

But: does the solution of (*) give us (exactly) what we need? Note that the solution depends on

- The reference point Z
- The chosen distance d
- The shape of the Pareto front.

Similar problems with all scalarizing functions (e.g., ASF)

- The shape of the Pareto front.
Predictor Corrector (PC) Methods

Given: \(H: \mathbb{R}^{N+1} \rightarrow \mathbb{R}^N \), \(H(x) = 0 \)

\(x_0 \in \mathbb{R}^{N+1} \) s.t. \(H(x_0) = 0 \), \(\text{rk}(H'(x_0)) = N \)

IFT: \(\exists \ c: (-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{N+1} \) \(c(0) = x_0 + H(c(s)) = 0 \)

Differentiation: \(H'(c(s)) \cdot c'(s) = 0 \)

Orthogonalization: \(H'(x_0) = QR = (q_1 \cdots q_{N+1})R \)

Predictor: \(p = x_0 + t_0 q_{N+1} \)

Corrector: Newton method on \(H(x) = 0 \) starting with \(p \)
PC Method of Hillermeier

[Hillermeier, 2001] Use PC method on

\[\tilde{F} : \mathbb{R}^{n+k} \rightarrow \mathbb{R}^{n+1} \]

\[\tilde{F}(x, \alpha) = \left(\sum_{i=1}^{k} \alpha_i \nabla f_i(x) \right) \]

\[\left(\sum_{i=1}^{k} \alpha_i - 1 \right) \]

Possible drawbacks

• Consideration of compound \((x, \alpha)\) space may increase nonlinearity

• No treatment of inequality constraints discussed
Pareto Tracer [Martin, Sch., 2014]

Basic Idea:
Use PC method as above, but separate decision \((x)\) and weight \((\alpha)\) space whenever possible

- Directly compute kernel vectors of F-tilde and utilize ‘steering’ in objective space
- Use Newton method for MOPs by [Fliege & Svaiter, 2009]
Pareto Tracer: Predictor (1/3)

Kernel vector of F'

$$F'(x, \alpha) \begin{pmatrix} \nu \\ \mu \end{pmatrix} = \begin{pmatrix} H \alpha \\ 0 \end{pmatrix} \begin{pmatrix} J^T \end{pmatrix} \begin{pmatrix} \nu \\ \mu \end{pmatrix} = \begin{pmatrix} 0 \end{pmatrix}$$

$$i = 0 \quad \text{(equation II)}$$

$$H = J^T \quad \text{(equation I)}$$

Steer the search in direction d \quad R^k : compute \quad R^n s.t. $J = d$

I: \quad $d = JH^{-1}J^T \cdot d$

II: \quad $i = 0$

$JH^{-1}J^T \cdot d = d \div \frac{1}{2}$

$$d = JH^{-1}J^T \cdot d$$
Pareto Tracer: Predictor (2/3)

Task: compute d duch that a movement along the *linearized* Pareto front is performed.

x KKT point R^k s.t. $J^T = 0$

$$a = QR = (q_1 \ldots q_k) \begin{bmatrix} r_{11} & \vdots \\ 0 & 1 \end{bmatrix}$$

$$= r_{11}q_1 \text{ span}\{q_1\} \{q_2, \ldots, q_k\} \text{ forms an orthonormal basis (ONB) of}$$

choose directions $d_i := q_{i+1}, \ i = 1, \ldots, k$ 1

and use d_i as predictors
Pareto Tracer: Predictor (3/3)

Theorem: Let \(x \) be a KKT point of \((MOP)\) with weight vector \(\alpha > 0 \). Further, let \(\nabla f_i(x) \neq 0, \ i=1,\ldots,k \), \(\text{rank}(J)=k-1 \) and \(H_\alpha \) be regular. Let \(d_i \) and \(\mu_d \) as above, then

\[
\begin{align*}
_i &= JH^{-1} J^T d_i, \quad i=1,\ldots,k-1
\end{align*}
\]

point along the linearized Pareto set at \(x \) and the vectors

\[
J_i, \quad i=1,\ldots,k-1
\]

form an ONB of the linearized Pareto front at \(F(x) \).
Pareto Tracer: Corrector

[Fliege & Svaiter, 2009]

Idea: given x and (MOP), compute the Newton direction ν via solving

$$\max \min_{i=1,...,k} \nabla f_i(x)^T + \frac{1}{2} T \nabla^2 f_i(x)$$

Remark: necessary condition for $k=1$: $\nabla^2 f(x) + \nabla f(x) = 0$

$$\min_{t} \quad t$$

$$\text{s.t.} \quad \nabla f_i(x)^T + \frac{1}{2} T \nabla^2 f_i(x) \leq 0, \quad i = 1,..,k$$
Hessian Free Realization

Successive update of the Hessians via quasi Newton strategies, i.e., approximation of H_α by

$$B_\alpha = \sum_{i=1}^{k} \alpha_i B_i,$$

where $B_i \approx \nabla^2 f_i(x)$

→ Only gradient information required
Example PT1: Unconstr. MOP

\[f_1(x) = \frac{1}{2}(\sqrt{1 + (x_1 + x_2)^2} + \sqrt{1 + (x_1 - x_2)^2} + x_1 x_2) + e^{(x_1 x_2)^2} \]

\[f_2(x) = \frac{1}{2}(\sqrt{1 + (x_1 + x_2)^2} + \sqrt{1 + (x_1 - x_2)^2} - x_1 + x_2) + e^{(x_1 x_2)^2} \]

<table>
<thead>
<tr>
<th></th>
<th>Hillermeier</th>
<th>PT-N</th>
<th>PT-QN</th>
<th>PT-SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solutions</td>
<td>65.0000</td>
<td>63.0000</td>
<td>63.0000</td>
<td>63.0000</td>
</tr>
<tr>
<td>Avg. corrector iterations</td>
<td>2.3594</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Function evaluations</td>
<td>65.0000</td>
<td>63.0000</td>
<td>63.0000</td>
<td>63.0000</td>
</tr>
<tr>
<td>Jacobian evaluations</td>
<td>216.0000</td>
<td>63.0000</td>
<td>63.0000</td>
<td>63.0000</td>
</tr>
<tr>
<td>Hessian evaluations</td>
<td>432.0000</td>
<td>126.0000</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
PT2: Eq. Constr. MOP, n=100

\[f_j(x) = \sum_{i=1, i \neq j}^{100} (x_i - a_i^j)^2 + (x_j - a_i^j)^4, \quad j = 1, 2 \]

s.t. \[\|x - c\|^2 = r^2 \]

<table>
<thead>
<tr>
<th></th>
<th>Hillermeier</th>
<th>PT-N</th>
<th>PT-QN</th>
<th>PT-SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solutions</td>
<td>63.0000</td>
<td>64.0000</td>
<td>64.0000</td>
<td>63.0000</td>
</tr>
<tr>
<td>Avg. corrector iterations</td>
<td>3.1746</td>
<td>1.8254</td>
<td>1.9688</td>
<td>4.7778</td>
</tr>
<tr>
<td>Function evaluations</td>
<td>64.0000</td>
<td>179.0000</td>
<td>192.0000</td>
<td>365.0000</td>
</tr>
<tr>
<td>Jacobian evaluations</td>
<td>264.0000</td>
<td>179.0000</td>
<td>191.0000</td>
<td>365.0000</td>
</tr>
<tr>
<td>Hessian evaluations</td>
<td>528.0000</td>
<td>358.0000</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
PT3: Eq. + Box Constr. MOP

\[f_1(x) = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 \]
\[f_2(x) = 3x_1 + 3x_2 \frac{x_3}{3} + 0.01(x_4, x_5)^3 \]
\[s.t. \quad x_1 + 2x_2, x_3, 0.5x_4 + x_5 = 2 \]
\[4x_1, 2x_2 + 0.8x_3 + 0.6x_4 + 0.5x_5^2 = 0 \]
\[x_i \in [-2, 2], i = 1, \ldots, 5 \]

<table>
<thead>
<tr>
<th></th>
<th>PT-N</th>
<th>PT-QN</th>
<th>PT-SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solutions</td>
<td>62.0000</td>
<td>62.0000</td>
<td>62.0000</td>
</tr>
<tr>
<td>Avg. corrector iterations</td>
<td>1.0323</td>
<td>1.0323</td>
<td>2.3968</td>
</tr>
<tr>
<td>Function evaluations</td>
<td>128.0000</td>
<td>132.0000</td>
<td>219.0000</td>
</tr>
<tr>
<td>Jacobian evaluations</td>
<td>127.0000</td>
<td>127.0000</td>
<td>215.0000</td>
</tr>
<tr>
<td>Hessian evaluations</td>
<td>254.0000</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
PT4: Unconstr. MOP, $k=3$

$$f_j(x) = \sum_{i=1, i \neq j}^{100} \left((x_i - a_{ij})^2 + (x_j - a_{ij})^4 \right), \quad j = 1, 2, 3$$

PT-QN: 4109 F, 2504 J
Pareto Explorer

Basic Idea:
Global/local exploration of the performance landscape via
1. Compute set of initial candidate solutions (via global method)
2. Explore solution manifold locally: starting from a given (optimal) solution, steer the search along the Pareto set/front into given user specified directions (decision space, objective space, weight space, dynamic reference points)
Neighborhood Exploration

Example: bias free neighborhood exploration in objective space for DTLZ2
PE: Steering in Objective Space

Given: x KKT point, R^k s.t. $J^T = 0$

dy : user specified direction in obj. space

$$d_{new} = Q_2 Q_2^T dy$$ orthogonal projection onto linearized PF

\rightarrow apply Pareto Tracer using d_{new}
PE: Steering in Decision Space (1)

Example: \(x = \begin{pmatrix} 100 \\ 1 \\ 2 \end{pmatrix} \) \(\vdots \) reduce \(x_1 \)

Given: \(x \) KKT point

\(x \) : user specified direction in decision space

\[Q_x = \begin{pmatrix} 1 & \cdots & k & 1 \end{pmatrix} \] ONB of lin. Pareto set

\[u_{new} = Q_x Q_x^T \] orth. proj. onto lin. Pareto set

\(\Rightarrow \) apply Pareto Tracer using \(u_{new} \)
PE: Steering in Decision Space (2)

Setting Decision Maker is satisfied with objective value \(F(x) \)

Possible solution find "best" direction \(v \) under the constraint that the movement in objective space is minimal \((Jv = 0) \)

\[\rightarrow \text{Predictor direction is solution of} \]

\[\min_v -\langle v, d_x \rangle \]

s. t. \[Jv = 0 \]

\[||v|| = 1 \]
Example: Laundry System

Simplified model for a laundry system

Objectives:
1. Wool grease type A
2. Wool grease type B
3. Red wine
4. Sebum type A
5. Sebum type B
6. Curry
7. Motor oil
8. Petroleum
9. Blood
10. Egg
11. Starch
12. Vegetable fat
13. Cocoa
14. Cost

Parameters:
1. Temperature
2. Amount of cleaner
3. Washing time
4. Frequency of the rotating unit
Laundry System: Steer in Obj. Space

Start: high quality solution (high cost)

Steering: reduce cost \((=f_{14}) \rightarrow d_y = -e_{14}\)
Laundry System: Steer in Dec. Space

Interpretation:

\[x_3(t_0=0)=1.45, \ x_3(t_{\text{final}})=0.73 \]

\[\rightarrow \text{Washing time can be reduced by approx. 50% without (significantly) changing the washing quality} \]
Conclusions and Future Work

Tools

- MOPs: Pareto Tracer
- MaOPs: Pareto Explorer

Future Work

- hybrids of EAs and continuation methods
- evolutionary continuation-like strategies
- applications to problems related to SMD!

Questions?