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What is a self-organizing system?
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A framework for social dynamics
We consider multiagent systems
of the form: for i = 1, . . . , N

ẋi =
1

N

N∑
j=1

a(|xi−xj |)(xj−xi) ∈ Rd,

and their mean-field limit equa-
tion (here F [a](ξ) = −a(|ξ|)ξ)

∂µ

∂t
= −∇ · ((F [a] ∗ µ)µ),

Patterns related to different

balances of social forces

Several “social forces” encoded in the interaction kernel a:
� alignment;
� repulsion-attraction;
� self-propulsion/friction...
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The problem

� Tremendous theoretical success but the issue of actual applica-
bility is so far scarcely addressed;

� Purely qualitative analysis to reproduce macroscopical patterns;
� Well-posedness relies on smoothness and asymptotic properties

of the kernel a at 0 and ∞;
� Certainly results of great importance, as such functions likely

differ from physical models: it is legitimate to consider a large
variety of function classes;

� However, a solid mathematical framework on ‘learnability” of in-
teractions from observations of the dynamics is not yet available.

⇒ a(r) = sin

(
log(r + 1)

d∏
i=1

ecos(i·r
2) + . . .

)
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The naive approach: optimal control

Given a finite time horizon T > 0 one would seek for a minimizer â
of

E(â) =
1

T

∫ T

0

[
‖x[a](s)− x[â](s)‖2 +R(â)

]
ds,

being R a suitable regularization functional and t 7→ x[â](t) =
(x1(t), . . . , xN (t)) be the solution of

ẋi =
1

N

N∑
j=1

â(|xi − xj |)(xj − xi).

However, one faces several problems!

� t 7→ x[â](t) strongly nonlinear ⇒ E(â) strongly nonconvex;

� computationally unfeasible for N large (curse of dimensionality
- Richard E. Bellman).
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E(â) =
1

T

∫ T

0

[
‖x[a](s)− x[â](s)‖2 +R(â)
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The variational approach

Instead of minimizing the distances between trajectories x[â](t), we
minimize the discrepancy between velocities ẋi(t),

EN (â) =
1

T

∫ T

0

1

N

N∑
i=1

∣∣∣∣ 1

N

N∑
j=1

â(|xi(t)− xj(t)|)(xi(t)− xj(t))− ẋi(t)
∣∣∣∣2dt,

among all functions

â ∈ X =
{
b : R+ → R | b ∈ L∞(R+) ∩W 1

∞,loc(R+)
}

(ODEs and mean-field equations are well-posed).

Proposition
If a, â ∈ X then there exist a constant C > 0 depending on T, â and
x0,1, . . . , x0,N and a “certain” compact set K ⊂ R+ such that

‖x[a](t)− x[â](t)‖ ≤ C
√
EN (â) for all t ∈ [0, T ].

Hence, minimizing EN (â) implies an accurate approximation of t 7→ x[â](t)
at finite time. (Proof: just a Gronwall.)
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The main question

� EN is easily computable from the knowledge of the trajectories of
the system x[a](t) (perhaps approximating ẋi(t) by xi(t+δt)−xi(t)

δt ).

� We use the number of agents N as an optimization parameter:
does a larger number of agents improve learnability?

� Being quadratic (its minimization is just a least squares!!!), its
minimizers can be efficiently numerically computed on a finite
dimensional space VN ⊂ X such that VN ↗ X as N → +∞.

Question: for which sequence VN do minimizers

âN ∈ argmin
â∈VN

EN (â)

satisfy âN → a, and in which topology does this limit hold?
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Γ-limit of the EN
� Suppose there exists a functional E such that a = argminâ∈X E(â).
� Then the above question translates into the convergence of the

minimizers of EN to the minimizer of E , i.e., the Γ-convergence
of EN to E . But what can E be?

� Set F [a](ξ) = −a(|ξ|)ξ and rewrite the initial system as
ẋNi (t) =

1

N

N∑
j=1

F [a](xNi (t)− xNj (t)) for t ∈ (0, T ],

xNi (0) = xN0,i,

i = 1, . . . , N.

� Define the empirical measure µN : [0, T ]→ Pc(Rd) as

µN (t) =
1

N

N∑
i=1

δxNi (t).
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A possible solution: the continuity equation

� µN is a solution to the continuity equation (abbreviated c.e.)

∂µ

∂t
(t) = −∇ · ((F [a] ∗ µ(t))µ(t)) for t ∈ (0, T ].

with initial datum µN (0) = µN0 := 1
N

∑N
i=1 δxN0,i

.

� Moreover, we can now rewrite EN as

EN (â) =
1

T

∫ T

0

1

N

N∑
i=1

∣∣∣∣ 1

N

N∑
j=1

(
F [â]− F [a]

)
(xi − xj)

∣∣∣∣2dt
=

1

T

∫ T

0

∫
Rd

∣∣∣∣(F [â]− F [a]
)
∗ µN (t)

∣∣∣∣2dµN (t)(x)dt,
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EN (â) =
1

T

∫ T

0

1

N

N∑
i=1

∣∣∣∣ 1

N

N∑
j=1

(
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Existence and uniqueness of solutions of the c.e.

Theorem
� Suppose a ∈ X, let T > 0 and fix µ0 ∈ Pc(Rd).
� Let µ be a weak solution of the c.e. with µ(0) = µ0 on [0, T ].

� Let µN0 = 1
N

∑N
i=1 δxN0,i

be such that xN0,i ∼ µ0 i.i.d. ∀N and ∀i.

Then, ∃R > 0 depending only on T, a, and supp(µ0) such that it
holds

supp(µN (t)) ∪ supp(µ(t)) ⊆ B(0, R), ∀N ∈ N and ∀t ∈ [0, T ],

lim
N→+∞

sup
t∈[0,T ]

W1(µ(t),µN (t)) = 0.
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Then, ∃R > 0 depending only on T, a, and supp(µ0) such that it
holds

supp(µN (t)) ∪ supp(µ(t)) ⊆ B(0, R), ∀N ∈ N and ∀t ∈ [0, T ],

lim
N→+∞

sup
t∈[0,T ]

W1(µ(t),µN (t)) = 0.
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The limit functional E
� Natural candidate for the Γ-limit E of the EN : as µ is the uniform

limit of the µN then we define

E(â) =
1

T

∫ T

0

∫
Rd

∣∣∣∣(F [â]− F [a]
)
∗ µ(t)

∣∣∣∣2dµ(t)(x)dt.

� Since E(â) ≥ 0 and E(a) = 0, then a minimizes E . Is it unique?
� Given d(x, y) = |x− y|, introduce the family of measures

%(t)(A) = (µ(t)⊗ µ(t))(d−1(A)), for all t ∈ [0, T ] and

ρ(A) =
1

T

∫ T

0

∫
A
s2d%(t)(s)dt

%(t)(s) tells precisely how likely is that there are two indexes i 6= j
such that |xi(t)−xj(t)| = s, while ρ(s) averages these likelihoods
over the entire time frame [0, T ] (weighted by s2).

� supp(ρ) ⊆ [0, 2R].
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� Since E(â) ≥ 0 and E(a) = 0, then a minimizes E . Is it unique?
� Given d(x, y) = |x− y|, introduce the family of measures

%(t)(A) = (µ(t)⊗ µ(t))(d−1(A)), for all t ∈ [0, T ] and

ρ(A) =
1

T

∫ T

0

∫
A
s2d%(t)(s)dt

%(t)(s) tells precisely how likely is that there are two indexes i 6= j
such that |xi(t)−xj(t)| = s, while ρ(s) averages these likelihoods
over the entire time frame [0, T ] (weighted by s2).

� supp(ρ) ⊆ [0, 2R].

M. Bongini Inferring Interaction Rules from Observations of Evolutive Systems 11 of 23



The limit functional E
� Natural candidate for the Γ-limit E of the EN : as µ is the uniform

limit of the µN then we define

E(â) =
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∣∣∣∣(F [â]− F [a]
)
∗ µ(t)

∣∣∣∣2dµ(t)(x)dt.
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The coercivity condition

� By Jensen or Hölder inequality it holds

E(â) ≤
∫
R+

|â(s)− a(s)|2dρ(s) = ‖â− a‖2L2(R+,ρ)

� If ADDITIONALLY E satisfies the coercivity condition

∃cT > 0 such that cT ‖â− a‖2L2(R+,ρ)
≤ E(â)(1)

then follows E(â) = 0 =⇒ â = a in L2(R+, ρ).
Thus a is essentially the unique minimizer of E in L2(R+, ρ).

� The quantity ρ(r) captures the frequency of the mutual distance
r realized by two particles during the dynamics. If ρ(r) = 0, one
cannot expect the reconstruction â to agree with a at r.

� For several a and µ0 one can verify (1) deterministically or with
high probability. Numerical simulations confirm that cT > 0 in
many circumstances.
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≤ E(â)(1)
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Thus a is essentially the unique minimizer of E in L2(R+, ρ).

� The quantity ρ(r) captures the frequency of the mutual distance
r realized by two particles during the dynamics. If ρ(r) = 0, one
cannot expect the reconstruction â to agree with a at r.
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Existence of minimizers of EN
Proposition Fix M > 0 and K = [0, 2R] ⊂ R+ for some R > 0.
Then the set

XM,K = {b ∈W 1
∞(K) : ‖b‖L∞(K) + ‖b′‖L∞(K) ≤M}

is relatively compact with respect to the uniform convergence on K.
Proposition Assume a ∈ X. Let V be a closed subset of XM,K w.r.t.
the uniform convergence. Then

argmin
â∈V

EN (â) 6= ∅.

Definition The closed subsets VN ⊂ XM,K , N ∈ N have the uniform
approximation property in L∞(K) if for all b ∈ XM,K there exists
(bN )N∈N such that

� bN ∈ VN for every N ∈ N and

� (bN )N∈N converges uniformly to b on K.

M. Bongini Inferring Interaction Rules from Observations of Evolutive Systems 13 of 23



Existence of minimizers of EN
Proposition Fix M > 0 and K = [0, 2R] ⊂ R+ for some R > 0.
Then the set

XM,K = {b ∈W 1
∞(K) : ‖b‖L∞(K) + ‖b′‖L∞(K) ≤M}

is relatively compact with respect to the uniform convergence on K.
Proposition Assume a ∈ X. Let V be a closed subset of XM,K w.r.t.
the uniform convergence. Then

argmin
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The Γ-convergence - I

Theorem Assume a ∈ X, fix µ0 ∈ Pc(Rd) and set

M ≥ ‖a‖L∞(K) + ‖a′‖L∞(K).

For every N ∈ N, let xN0,1, . . . , x
N
0,N be i.i. µ0-distributed and define

EN (â) =
1

T

∫ T

0

∫
Rd

∣∣∣∣(F [â]− F [a]
)
∗ µN (t)

∣∣∣∣2dµN (t)(x)dt,

where µN is the solution of c.e. with initial datum µN0 = 1
N

∑N
i=1 δxN0,i

.

Let VN ⊂ XM,K be a sequence with the uniform approximation
property and consider

âN ∈ argmin
â∈VN

EN (â).

Then (âN )N∈N converges uniformly on K (up to subsequences) to
some continuous function â ∈ XM,K such that E(â) = 0.
Furthermore...
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Then (âN )N∈N converges uniformly on K (up to subsequences) to
some continuous function â ∈ XM,K such that E(â) = 0.
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â∈VN

EN (â).
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The Γ-convergence - II
...if the coercivity condition holds, then â = a in L2(R+, ρ) and

‖âN − a‖L2(R+,ρ) ≤ C(M,T, µ0)N
−1.

Proof: by compactness ofXM,K , the sequence of minimizers (âN )N∈N
admits a subsequence converging to some â ∈ XM,K . The uni-
form approximation property of the VN implies E(b) ≥ E(â) for all
b ∈ XM,K , whence 0 = E(a) ≥ E(â) ≥ 0. �

Problem: the bound M depends on a, but a is unknown!

Solution: For N fixed,
EN (âN ) is decreasing for
M → +∞ and ∃M∗
independent from N such
that

“∂EN (âN )

∂M
(M∗) = 0”.
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b ∈ XM,K , whence 0 = E(a) ≥ E(â) ≥ 0. �

Problem: the bound M depends on a, but a is unknown!

Solution: For N fixed,
EN (âN ) is decreasing for
M → +∞ and ∃M∗
independent from N such
that

“∂EN (âN )

∂M
(M∗) = 0”.
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Minimizing EN is a least squares minimization

The advantage of minimizing EN (â) is that it can be reduced to a
simple `2 minimization. Indeed

� let VN = span{ϕλ}
D(N)
λ=1 where the ϕλ are a linear B-spline basis

with D(N) elements supported on [0, 2R],

� let 0 = t0 < t1 < . . . < tm = T be a time discretization,

� let ẋi(tk) =
xi(tk)−xi(tk−1)

tk−tk−1
, for every k ≥ 1 be the finite differ-

ences approximating the true velocities,

then the discrete-time error functional satisfies

EN (â) =
1

m

m∑
k=1

1

N

N∑
j=1

∣∣∣∣∣∣
D(N)∑
λ=1

aλ
N

N∑
i=1

ϕλ(|xj(tk)− xi(tk)|)(xj(tk)− xi(tk))− ẋi(tk)

∣∣∣∣∣∣
2

=
1

mN
‖C~a− v‖22.

where ~a = (a1, . . . , aD(N)), v = (ẋ1(t1), . . . , ẋN (t1), . . . , ẋ1(tm), . . . , ẋN (tm)).
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EN (â) =
1

m

m∑
k=1

1

N

N∑
j=1

∣∣∣∣∣∣
D(N)∑
λ=1

aλ
N

N∑
i=1

ϕλ(|xj(tk)− xi(tk)|)(xj(tk)− xi(tk))− ẋi(tk)
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How we implement the constraints

If D =


1 −1 . . . 0 0
...

...
. . .

. . .
...

0 0 . . . 1 −1
0 0 . . . 0 0

then

‖a‖L∞([0,2R]) ≤ 2‖~a‖∞ and ‖a′‖L∞([0,2R]) ≤ ‖D~a‖∞,

hence we numerically implement the convex constrained minimiza-
tion

min
â∈VN

EN (â) subject to ‖â‖L∞([0,R]) + ‖â′‖L∞([0,R]) ≤M,

in the following way

min
~a∈RD(N)

1

mN
‖C~a− v‖22 subject to 2‖~a‖∞ + ‖D~a‖∞ ≤M.
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Varying N - I

d L T M N D(N)

2 3 0.5 100 [10, 20, 40, 80] 2N

Table: Parameter values

0 1 2 3 4 5 6 7
−10

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7
−5

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7
−5

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7
−5

0

5

10

15

20

25

30

35

40

M. Bongini Inferring Interaction Rules from Observations of Evolutive Systems 18 of 23



Varying N - I

d L T M N D(N)

2 3 0.5 100 [10, 20, 40, 80] 2N

Table: Parameter values

0 1 2 3 4 5 6 7
−10

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7
−5

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7
−5

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7
−5

0

5

10

15

20

25

30

35

40

M. Bongini Inferring Interaction Rules from Observations of Evolutive Systems 18 of 23



Varying N - I

d L T M N D(N)

2 3 0.5 100 [10, 20, 40, 80] 2N

Table: Parameter values

0 1 2 3 4 5 6 7
−10

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7
−5

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7
−5

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7
−5

0

5

10

15

20

25

30

35

40

M. Bongini Inferring Interaction Rules from Observations of Evolutive Systems 18 of 23



Varying N - I

d L T M N D(N)

2 3 0.5 100 [10, 20, 40, 80] 2N

Table: Parameter values

0 1 2 3 4 5 6 7
−10

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7
−5

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7
−5

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7
−5

0

5

10

15

20

25

30

35

40

M. Bongini Inferring Interaction Rules from Observations of Evolutive Systems 18 of 23



Varying N - II

d L T M N D(N)

2 3 0.5 100 [10, 20, 40, 80] 2N

Table: Parameter values
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The coercivity condition
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1/10*Square of L2 distance

Empirical Error functional

Figure: Plot of 1
10‖a− âN‖

2
L2(R+,ρ)

and EN (âN ). We can estimate the

constant cT with the value 1
10 .

d T M N D(N)
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Tuning the constraint M - I

Left: reconstruction of a kernel with different M .
Right: reconstruction of agents’ trajectories with different M .
In white: true kernel and true trajectories.
The brighter the reconstruction, the bigger M .
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Tuning the constraint M - II

Left: reconstruction of a kernel with different M .
Right: reconstruction of agents’ trajectories with different M .
In white: true kernel and true trajectories.
The brighter the reconstruction, the bigger M .
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A few info

� WWW: http://www-m15.ma.tum.de/Allgemeines/MattiaBongini
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� M. Bongini, M. Fornasier, M. Hansen, and M. Maggioni. Inferring
interaction rules from observations of evolutive systems II: The uni-
versal learning approach. in preparation, 2016.

� G. Albi, M. Bongini, E. Cristiani, D. Kalise, Invisible Control of
Self-Organizing Agents Leaving Unknown Environments, submitted,
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Pontryagin Maximum Principle, submitted, 2015.

M. Bongini Inferring Interaction Rules from Observations of Evolutive Systems 23 of 23


