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Patterns related to different

balances of social forces
Several “social forces” encoded in the interaction kernel a:
B alignment;

® repulsion-attraction;
® self-propulsion/friction...
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The problem

® Tremendous theoretical success but the issue of actual applica-
bility is so far scarcely addressed;
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The naive approach: optimal control

Given a finite time horizon 7" > 0 one would seek for a minimizer a

of

T
£@ =7 [ llala) - <)) + R@) ds,

being R a suitable regularization functional and t — =z[a](t) =
(x1(t),...,zN(t)) be the solution of
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Given a finite time horizon 7" > 0 one would seek for a minimizer a

of

T
£@ =7 [ llala) - <)) + R@) ds,

being R a suitable regularization functional and t — =z[a](t) =
(x1(t),...,zN(t)) be the solution of

. 1 al
iZNZaM‘Z—x]] Tj— x;).

However, one faces several problems!

® ¢ +— z[a)(t) strongly nonlinear = £(a) strongly nonconvex;

® computationally unfeasible for N large (curse of dimensionality
- Richard E. Bellman).
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The variational approach
Instead of minimizing the distances between trajectories x[a](t), we
minimize the discrepancy between velocities #;(t),

2
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among all functions
GeX={b:Ry 5> R|b€ Lo(Ry)NWZ 1,.(Ry)}

(ODEs and mean-field equations are well-posed).
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The variational approach

Instead of minimizing the distances between trajectories x[a](t), we
minimize the discrepancy between velocities ;(t),

among all functions
GeX={b:Ry 5> R|b€ Lo(Ry)NWZ 1,.(Ry)}
(ODEs and mean-field equations are well-posed).
Proposition

If a,a € X then there exist a constant C > 0 depending on T,a and
Zo1,---,To,n and a “certain” compact set K C Ry such that

lx[al(t) — z[a] ()| < C/En(@)  for allt € [0,T].

Hence, minimizing En (@) implies an accurate approzimation of t — x[a)(t)
at finite time. (Proof: just a Gronwall.)
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The main question

m £y is easily computable from the knowledge of the trajectories of
the system z[a](t) (perhaps approximating @;(t) by

x; (t+6t) —x; (t) )
ot .
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m £y is easily computable from the knowledge of the trajectories of
the system z[a](t) (perhaps approximating @;(t) by M).

® We use the number of agents N as an optimization parameter:
does a larger number of agents improve learnability?

® Being quadratic (its minimization is just a least squares!!!), its
minimizers can be efficiently numerically computed on a finite
dimensional space Vy € X such that Vy X as N — +oo.

Question: for which sequence Vy do minimizers

ay € argminEy(a)
acVy

satisfy ay — a, and in which topology does this limit hold?
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A possible solution: the continuity equation

= 4V is a solution to the continuity equation (abbreviated c.e.)

(1) =~V - (Flal » p()ptt))  Tor t € (0,7].
with initial datum N (0) = pd := £ SV, Oy,
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A possible solution: the continuity equation

= 4V is a solution to the continuity equation (abbreviated c.e.)

W 1) = V- (Fla] « p(0)p(t))  or 1 € (0.7).

with initial datum p™(0) = @)’ == % SN 6

=1 o,

®m Moreover, we can now rewrite Ey as

T N N 2
ex@ =7 [ v 2|5 (P~ Fla) (i )| d
T 2
_ % /0 /R (F1@) ~ Flal) + 5 (0)] die ()@,
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Existence and uniqueness of solutions of the c.e.

Theorem
® Suppose a € X, let T > 0 and fir pg € P(RY).
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Existence and uniqueness of solutions of the c.e.

Theorem
® Suppose a € X, let T > 0 and fir pg € P(RY).

m Let i be a weak solution of the c.e. with (1(0) = po on [0,T].

» Let p =+ sz\i1 O be such that xé\{i ~ pg i.i.d. YN and Vi.
Then, AR > 0 depending only on T,a, and supp(uo) such that it
holds

supp(u? (t)) U supp(u(t)) € B(0, R), YN € N and ¥t € 0,7,

lim  sup Wi(u(t),u" (t) = 0.
N—4o00 te[0,7]
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® Natural candidate for the I'-limit £ of the Ey: as p is the uniform
limit of the ;¢ then we define

=1 ] L

® Since £(a) > 0 and &£(a) = 0, then a minimizes £. Is it unique?
® Given d(z,y) = |z — y| introduce the family of measures

o(t)(A) = (u(t) @ pu(t))(d1(A)), for all t € [0,T] and

//%

Fla] — Fla]) = pu(t)| dp(t)(x)dt.
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® Since £(a) > 0 and &£(a) = 0, then a minimizes £. Is it unique?
® Given d(z,y) = |:c — y| introduce the family of measures
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o(t)(s) tells precisely how likely is that there are two indexes i # j
such that |z;(t) —x;(t)| = s,
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® Given d(z,y) = |:c — y| introduce the family of measures

o(t)(A) = (u(t) ® pu(t))(d~1(A)), for all ¢ € [0,T] and

//%

o(t)(s) tells precisely how likely is that there are two indexes i # j
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over the entire time frame [0, 7] (weighted by s2).

M. Bongini Inferring Interaction Rules from Observations of Evolutive Systems 11 of 23



H e O I | | | I

The limit functional £

® Natural candidate for the I'-limit £ of the Ey: as p is the uniform
limit of the ;¢ then we define

=1 ] L

® Since £(a) > 0 and &£(a) = 0, then a minimizes £. Is it unique?
® Given d(z,y) = |:c — y| introduce the family of measures

o(t)(A) = (u(t) ® pu(t))(d~1(A)), for all ¢ € [0,T] and

//%

o(t)(s) tells precisely how likely is that there are two indexes i # j
such that |z;(t) —x;(t)| = s, while p(s) averages these likelihoods
over the entire time frame [0, 7] (weighted by s2).

= supp(p) < [0,2R].

Fla] — Fla]) = pu(t)| dp(t)(x)dt.
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The coercivity condition

® By Jensen or Hélder inequality it holds

£@) < /R [a(s) — a(s)2dp(s) = Il — a2, @,
+
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® By Jensen or Hélder inequality it holds

£@) < /R [a(s) — a(s)2dp(s) = Il — a2, @,
+

m I[f ADDITIONALLY €& satisfies the coercivity condition

(1) Jder > 0 such that ep|ja — a\|%2(R+’p) < &(a)

then follows £(a) =0 = a=ain Ly(R4,p).
Thus a is essentially the unique minimizer of £ in La(R4, p).

® The quantity p(r) captures the frequency of the mutual distance
r realized by two particles during the dynamics. If p(r) = 0, one
cannot expect the reconstruction @ to agree with a at r.
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® By Jensen or Hélder inequality it holds

£@@) < /R [a(s) — als)dp(s) = d — all%, g, )
+

m I[f ADDITIONALLY €& satisfies the coercivity condition
(1) Jer > 0 such that cr|ja — a\|%2(R+’p) < &(a)

then follows £(a) =0 = a=ain Ly(R4,p).
Thus a is essentially the unique minimizer of £ in La(R4, p).

® The quantity p(r) captures the frequency of the mutual distance
r realized by two particles during the dynamics. If p(r) = 0, one
cannot expect the reconstruction @ to agree with a at r.

® For several a and pp one can verify (1) deterministically or with
high probability. Numerical simulations confirm that c¢p > 0 in
many circumstances.
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Existence of minimizers of £y

Proposition Fix M > 0 and K = [0,2R] C Ry for some R > 0.
Then the set

X ={b € WhL(K) : |bllroxy + IV | 1o (i) < M}

is relatively compact with respect to the uniform convergence on K.
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is relatively compact with respect to the uniform convergence on K.
Proposition Assume a € X. Let V be a closed subset of Xy g w.r.t.
the uniform convergence. Then

argmin Ey (a) # 0.
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Proposition Fix M > 0 and K = [0,2R] C Ry for some R > 0.
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Xarge = {b € Woo(K) 2 [Ibll oo ey + V| ou i) < M}

is relatively compact with respect to the uniform convergence on K.
Proposition Assume a € X. Let V be a closed subset of Xy g w.r.t.
the uniform convergence. Then

argmin Ey (a) # 0.

acV

Definition The closed subsets Viy C X7k, N € N have the uniform
approximation property in Lo (K) if for all b € X i there exists
(bN)NeN such that
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is relatively compact with respect to the uniform convergence on K.
Proposition Assume a € X. Let V be a closed subset of Xy g w.r.t.
the uniform convergence. Then

argmin Ey (a) # 0.
acV

Definition The closed subsets Viy C X7k, N € N have the uniform
approximation property in Lo (K) if for all b € X i there exists
(bN)NeN such that

m hy € Vy for every N € N and

® (by)nen converges uniformly to b on K.
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The I'-convergence - I

Theorem Assume a € X, fix yp € P.(R%) and set

M > lall oo x0) + 10/ Lo 10)-
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The I'-convergence - I
Theorem Assume a € X, fix yp € P.(R%) and set
M > lallpo(r) + 10/ Lo (1) -

For every N € N, let :cé\fl, . ,xé\fN be i.i. po-distributed and define

a2

where p?V is the solution of c.e. with initial datum ) = L Zf\i 1 535{}’

2
(Fla] — Fla]) = p™N (t)| du™(t)(x)dt,

- N
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Theorem Assume a € X, fix yp € P.(R%) and set
M > lallp o) + o' po () -

For every N € N, let :cé\fl, . ,xé\fN be i.i. po-distributed and define

a2
1

where 1%V is the solution of c.e. with initial datum pl’ = N Zf\il (Smév‘.
Let Vy C Xk be a sequence with the uniform approximatiofl

property and consider

2
(Fla] — Fla]) = p™N (t)| du™(t)(x)dt,

ay € argmin Ey(a).
aceVy
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The I'-convergence - II

..if the coercivity condition holds, then @ = a in Ly(Ry, p) and

”aN - a”Lz(R+,p) < C(M7 T, MO)N_l‘
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The I'-convergence - II
...if the coercivity condition holds, then @ = a in Lo(R4, p) and

”aN - a”Lz(R+,p) < C(M7 T, MO)N_l‘

Proof: by compactness of Xk, the sequence of minimizers (ax)yen
admits a subsequence converging to some @ € Xprx. The uni-
form approximation property of the Viy implies £(b) > £(a) for all
b e Xk, whence 0 = E(a) > E(a) > 0. O
Problem: the bound M depends on a, but a is unknown!

Solution: For N fixed,

0.04
En(ay) is decreasing for  ooss —
71010
M — 400 and AM* =P Eyelars
S 0025 —M
independent from N such £ oe
£ o015
that -mz 0.01 |
w
o~ 0.005
0EN(a ¥—
¢ M (M*) = 0” . % 10 20 30 40 50 60 70 80 90
Constraint M

oM
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m N N
En@ =3 DSBS ealles ) — wilta) D 1) — wi(ta) s (1)
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with D(N) elements supported on [0,2R],
mlet 0=ty <t <...<t,="T be a time discretization,

m et &;(tg) = %, for every k > 1 be the finite differ-
ences approximating the true velocities,
then the discrete-time error functional satisfies

2

m N |D(N) N
=~ 1 1 a .
Ev@) = — > =3I 2D ealles (te) — walt)) (@ (8n) — @i(te)) — i (1)
k=1 j=1| =1 i=1
1 -
=N ICa —vll3
where @ = (a1, e ,aD(N)), v = (i‘l(tl), e ,IEN(tl), e ,"tl(tm), e 7C'UN(tm)).
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How we implement the constraints
(1 -1 ... 0 0]

¥p=| " |then
0 0 ... 1 -1
0 0

lall £ o.2r) < 2lld@lleo and [la'[| 1 (0,27 < D@00,
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How we implement the constraints

1 =1 ... 0 0]
¥p=| " |then

0 0 ... 1 -1

0 0 ... 0 0]

lall £ o.2r) < 2lld@lleo and [la'[| 1 (0,27 < D@00,
hence we numerically implement the convex constrained minimiza-
tion

min Ey(@)  subject to [l (po,r) + 1@l Lou0.m) < M,
aeVy

in the following way

1

min |C@— |3 subject to  2||@llc + | Da|loc < M.

GerD(N) mN
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Varying N - I
(dIL]|T[M] N [DWV)]
12]3]05] 100 [10,20,40,80] | 2N |

Table: Parameter values
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Varying N - II
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The coercivity condition

—1/10*Square of L2 distance

— Empirical Error functional

7 8
Number of Agents

Figure: Plot of 5[la — ZL\N||%2(R+7P) and &y (ay). We can estimate the

constant ¢y with the value %.
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Tuning the constraint M - I

Left: reconstruction of a kernel with different M.

Right: reconstruction of agents’ trajectories with different M.
In white: true kernel and true trajectories.

The brighter the reconstruction, the bigger M.
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Tuning the constraint M - II

Left: reconstruction of a kernel with different M.

Right: reconstruction of agents’ trajectories with different M.
In white: true kernel and true trajectories.

The brighter the reconstruction, the bigger M.

[d[L[T] M
|

2 [ 3] 1 ]125x[l0,15,
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A few info

= WWW: http://www-m15.ma.tum.de/Allgemeines/MattiaBongini
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