

Biological Transportation Networks PDE Modeling and Numerics

joint work with Martin Burger (WWU Münster), Jan Haskovec (KAUST), Peter Markowich

(KAUST/Cambridge), Benoît Perthame (LLJL,UPMC)

Data-Rich Phenomena - Modelling, Analysing and Simulations using PDEs Cambridge

Matthias Schlottbom

16th Dec 2016

Westfälische Wilhelms-Universität Münster

Biological Transportation Networks 2

Outline

Modeling

Analysis

Numerics

living knowledg

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

Leaf venation

Slime mold growth and railway networks

E. Katifori et al: Damage and Fluctuations Induce Loops in Optimal Transport Networks, Phys Rev Letters 104: 048704 (2010). (left Fig.) A. Tero et al: Rules for Biologically Inspired Adaptive Network Design, Science 327: 439–442 (2010). (right Fig.)

Biological Transportation Networks

Biological Transportation Networks 4

Modeling

Analysis

Numerics

Microscopic flow model

- Given network with nodes v_j ∈ V and edges e_i ∈ E.
- \mathbb{E} models vessels/veins.
- In edge e_i = (j, k) between v_j and v_k, we have a flow

$$Q_i = C_i \Delta P_i = C_i (P_j - P_k)$$

- $C_i > 0$ vessel conductivity at edge e_i .
- P_j pressure at node v_j .
- ΔP_i pressure drop at edge e_i .

D. Hu, D. Cai: Adaptation and Optimization of Biological Transport Networks, Phys Rev Letters 111: 138701 (2013).

A. Tero et al: Rules for Biologically Inspired Adaptive Network Design, Science 327: 439-442 (2010).

Example: Hagen-Poiseuille flow (laminar flow)

Small vessels (diameter D_i < 0.6mm)¹

$$Q_i = \frac{\pi D_i^4}{128\eta} \frac{\Delta P_i}{L_i}$$

 η is the blood viscosity, L_i length of vessel e_i .

Leaf venation²: Leaf vein consists of a bundle of small tubes with similar diameter. Thus

$$C_i = nC_0 = \frac{\pi D_0^2 D_i^2}{128\eta L_i}.$$

n is the number of tubes C_0 and D_0 are the conductance and diameter of a single tube.

¹A.R. Pries, T.W. Secomb, P. Gaehtgens: Structural adaptation and stability of microvascular networks: theory and simulations. Am J Physiol Heart Circ Physiol 275: H349–H360 (1998).

²D. Hu, D. Cai: Adaptation and Optimization of Biological Transport Networks, Phys Rev Letters 111: 138701 (2013).

Microscopic flow distribution

Kirchhoff law:

Sum of incoming fluxes = Sum of outgoing fluxes.

At node v_j we have

$$\sum_{:e_i=(j,k)\in\mathbb{E}}Q_i=s_j$$

v_k:e_i=(j,k)∈E
 s_i allows modeling of sources and sinks for the flow.

Towards a macroscopic flow model

- C_i are scalars. What about the orientation of the vein?
- Main flow is in direction v_i of the vein e_i , $(|v_i| = 1)$

$$Q_i \cdot v_i = L_i C_i \frac{\Delta P_i}{L_i}.$$

No flow perpendicular to v_i

$$Q_i \cdot v_i^{\perp} = 0$$

• Setting $m = \sqrt{L_i C_i} v_i$, we obtain on the macroscopic level

$$Q(x) = (r(x)I + m(x) \otimes m(x))\nabla p(x).$$

r(x) models background permeability.^{3 4}

³G. Albi, M. Artina, M. Fornasier, P. Markowich: Biological transportation networks: modeling and simulation (2015).

⁴S. Whitaker: Flow in Porous Media I: A Theoretical Derivation of Darcy's Law, Transport in Porous Media 1:3–25 (1986).

Towards a macroscopic pressure model

- Kirchhoff's law $\sum_{v_k:e_i=(j,k)\in\mathbb{E}}Q_i=s_j$.
- Continuous interpretation

$$\int_{\partial V} n \cdot Q d\partial V = -\int_V S dx.$$

• Using
$$Q = (rl + m \otimes m) \nabla p$$
, we obtain

$$-\operatorname{div}((rl+m\otimes m)\nabla p) = S + B.C.$$

Network adaptation process

The network will minimize its "costs"⁵:

E = pumping power + maintaining costs.

Joule's law:

power = potential \cdot current = $\nabla p \cdot Q = r |\nabla p|^2 + |m \cdot \nabla p|^2$.

- Maintaining costs $|m|^{2\gamma}$.
 - $\gamma = 1/2$ for blood vessel systems.
 - $1/2 \le \gamma \le 1$ for leaf venation.

⁵D. Hu, D. Cai: Adaptation and Optimization of Biological Transport Networks, Phys Rev Letters 111: 138701 (2013).

Continuous adaptation model

WESTFÄLISCHE WILHELMS-UNIVERSITÄT

MÜNSTER

Adaptation energy

$$\min_{m} E_a(m) = \frac{1}{2} \int_{\Omega} c^2 (r |\nabla p(m)|^2 + |m \cdot \nabla p(m)|^2) + \frac{|m|^{2\gamma}}{\gamma} dx,$$

where p = p(m) solves

$$-\mathrm{div}((\mathit{rl} + \mathit{m} \otimes \mathit{m})\nabla \mathit{p}) = \mathcal{S} + B.C.$$

Adaptation and formation energy

$$E(m) = \frac{1}{2} \int_{\Omega} D^2 |\nabla m|^2 + c^2 r |\nabla p(m)|^2 + c^2 |m \cdot \nabla p(m)|^2 + \frac{|m|^{2\gamma}}{\gamma} dx.$$

living knowledg

knowle(

Minimization via evolution

Consider the L²-gradient flow

$$m_t = -\nabla E(m)$$

This leads to the system ($\gamma >$ 1/2)

$$-\operatorname{div}((rl + m \otimes m)\nabla p) = S \quad \text{in } \Omega \times (0, T) + \text{ B.C.},$$

$$m_t - D^2 \Delta m = c^2 \nabla p \otimes \nabla pm - |m|^{2(\gamma - 1)}m, \quad \text{in } \Omega \times (0, T),$$

$$m = 0 \quad \text{on } \partial \Omega \times (0, T),$$

$$m(t = 0) = m^0 \quad \text{in } \Omega.$$

For $\gamma = 1/2$, $m_t - D^2 \Delta m - c^2 \nabla p \otimes \nabla pm \in \partial \mathcal{R}(m)$, in $\Omega \times (0, T)$, where $\partial \mathcal{R}(m)$ is the subdifferential of $||m||_{L^1(\Omega)}$.

Biological Transportation Networks 13

Modeling

Analysis

Numerics

Analytical results

Let $\gamma \geq 1/2$, $S \in L^2(\Omega)$ and $m^0 \in H^1_0(\Omega)^d \cap L^{2\gamma}(\Omega)^d$. Then there exists a global weak solution (m, p[m]) with $E(m) \in L^{\infty}(0, \infty)$ and with

$$m \in L^{\infty}(0, \infty; H^{1}_{0}(\Omega)) \cap L^{\infty}(0, \infty; L^{2\gamma}(\Omega)),$$

$$\partial_{t}m \in L^{2}((0, \infty) \times \Omega),$$

$$\nabla p \in L^{\infty}(0, \infty; L^{2}(\Omega)),$$

$$m \cdot \nabla p \in L^{\infty}(0, \infty; L^{2}(\Omega)).$$

Moreover,

$$E(m(t)) + \int_0^t \int_\Omega |\partial_t m(s,x)|^2 dx ds \leq E(m^0) \qquad ext{for all } t \geq 0.$$

J. Haskovec, P. Markowich, B. Perthame: Math. Anal. of a PDE System for Biol. Netw. Formation, Comm. PDEs 40:5, 918–956 (2015). J. Haskovec, P. Markowich, B. Perthame, M. Schlottbom: Notes on a PDE System for Biological Network Formation (2015).

Analytical results 2

- ▶ The energy is non-convex in general.⁶
- Many stationary states.
- For γ < 1/2 the solutions of the evolution equation will approach zero in finite time⁷, i.e. finite-time breakdown.

⁶G. Albi, M. Artina, M. Fornasier, P. Markowich: Biological transportation networks: modeling and simulation (2015).

⁷J. Haskovec, P. Markowich, B. Perthame, M. Schlottbom: Notes on a PDE System for Biological Network Formation (2015).

Biological Transportation Networks 16

Modeling

Analysis

Numerics

ving knowledg

Mixed formulation

Setting $\sigma = \nabla m$, we consider $-\operatorname{div}((rI + m \otimes m)\nabla p) = S \text{ in } \Omega \times (0, T),$ p = 0 on $\Gamma \times (0, T)$, $n \cdot (rl + m \otimes m) \nabla p = 0$ on $\partial \Omega \setminus \Gamma \times (0, T)$, $\partial_t m - D^2 \operatorname{div} \sigma = c^2 (\nabla p \otimes \nabla p) m - |m|^{2(\gamma-1)} m \text{ in } \Omega \times (0, T),$ knowled $\sigma - \nabla m = 0$ in $\Omega \times (0, T)$, m = 0 on $\partial \Omega \times (0, T)$,

with $m(t = 0) = m^0$ in Ω .

Westfälische Wilhelms-Universität Münster

Weak mixed formulation

Find

 $(p, m, \sigma) \in L^{\infty}(0, T; H^1_{0,\Gamma}(\Omega)) \times L^2(0, T; L^2(\Omega)^2) \times L^2(0, T; H(\operatorname{div})^2)$ s.t.

$$\int_{\Omega} (rl + m \otimes m) \nabla p \cdot \nabla q \, dx = \int_{\Omega} Sq \, dx,$$
$$\int_{\Omega} \partial_t m \cdot v \, dx - \int_{\Omega} D^2 \mathrm{div} \sigma \cdot v \, dx = \int_{\Omega} f_{\gamma,c}(m, \nabla p) \cdot v \, dx,$$
$$\int_{\Omega} \sigma \cdot \mu \, dx + \int_{\Omega} m \cdot \mathrm{div} \mu \, dx = 0,$$

for all $(q, v, \mu) \in H^1_{0,\Gamma}(\Omega) \times L^2(\Omega)^2 \times H(\operatorname{div})^2$, $m(t = 0) = m^0$ in Ω ,

$$f_{\gamma,c}(m,
abla p)=c^2(
abla p\otimes
abla p)m-|m|_
ho^{2(\gamma-1)}m,$$

where $|m|_{\rho} = \sqrt{m_1^2 + m_2^2 + \rho}$.

living knowledge

Space discretization – approximation spaces

Lagrangian finite elements, i.e. continuous, piecewise linear functions

$$p \approx p_h \in P_h = \{q_h \in C^0(\overline{\Omega}) : q_{h|T} \in \mathcal{P}_1(T) \ \forall T \in \mathcal{T}_h, v_{h|\Gamma} = 0\}.$$

Piecewise constant functions

$$m \approx m_h \in M_h^2 = \{v_h \in L^2(\Omega) : v_{h|T} \in \mathcal{P}_0(T) \ \forall T \in \mathcal{T}_h\}^2.$$

Raviart-Thomas elements

$$\sigma \approx \sigma_h \in V_h = \{ \mu_h \in H(\operatorname{div}) : \mu_{h|T} \in \mathcal{P}_0(T)^2 + x \mathcal{P}_0(T) \, \forall T \in \mathcal{T}_h \}.$$

Galerkin semi-discretization

Find $(p_h, m_h, \sigma_h) \in L^{\infty}(0, T; P_h) \times L^2(0, T; M_h^2) \times L^2(0, T; V_h^2)$ s.t.

$$\begin{split} &\int_{\Omega} (rl + m_h(t) \otimes m_h(t)) \nabla p_h(t) \cdot \nabla q_h dx = \int_{\Omega} Sq_h dx, \\ &\int_{\Omega} \partial_t m_h(t) \cdot v_h - D^2 \mathrm{div} \sigma_h(t) \cdot v_h dx = \int_{\Omega} f_{\gamma,c}(m_h(t), \nabla p_h(t)) \cdot v_h dx, \\ &\int_{\Omega} \sigma_h(t) \cdot \mu_h dx + \int_{\Omega} m_h(t) \cdot \mathrm{div} \mu_h dx = 0, \end{split}$$

for all $(q_h, v_h, \mu_h) \in P_h \times M_h^2 \times V_h^2$, and $m_h(t = 0) = m_h^0$ in Ω .

Time discretization: IMEX Euler scheme

WILHELMS-UNIVERSITÄT

MÜNSTER

- Let $0 = t^0 < t^1 < \ldots < t^K = T$ be a partition of [0, T].
- $m_h^k \approx m_h(t^k)$, $p_h^k \approx p_h(t^k)$ and $\sigma_h^k \approx \sigma_h(t^k)$, $0 \le k \le K$.
- time-stepping scheme

$$\int_{\Omega} (rl + m_h^k \otimes m_h^k) \nabla p_h^k \cdot \nabla q_h = \int_{\Omega} Sq_h,$$

$$\int_{\Omega} (m_h^{k+1} - \delta^{k+1} D^2 \operatorname{div} \sigma_h^{k+1}) \cdot v_h = \int_{\Omega} (m_h^k + \delta^{k+1} f_{\gamma,c}(m_h^k, \nabla p_h^k)) \cdot v_h^{k+1}$$

$$\int_{\Omega} \sigma_h^{k+1} \cdot \mu_h + \int_{\Omega} m_h^{k+1} \cdot \operatorname{div} \mu_h = 0,$$
for all $(q_h, v_h, \mu_h) \in P_h \times M_h^2 \times V_h^2$, and $\delta^{k+1} = t^{k+1} - t^k.$

$$u_h^k = (rl + m_h^k \otimes m_h^k) \nabla p_h^k \text{ is the flow.}$$

Issues for time-stepping schemes

- $-D^2 \Delta m$ is stiff \rightsquigarrow implicit treatment.
- $c^2 \nabla p \otimes \nabla p$ has eigenvalues 0 and $c^2 |\nabla p|^2$.
 - $c^2 |\nabla p|^2 \gg 1 \rightsquigarrow$ implicit treatment ?
 - linearization errors $\rightsquigarrow \delta^k \ll 1$.
- ▶ $|m|^{2(\gamma-1)}m$ is non-differentiable for $\gamma < 1$, \rightsquigarrow order of the method?
- Overall guideline: $E(m_h^{k+1}) \leq E(m_h^k)$.

Example

 \mathcal{T}_h contains 102, 905 vertices and 204, 544 triangles, i.e. $h \approx$ 0.0032. Set

$$S = 1, \quad r = \frac{1}{10}, \quad c = 50, \quad D = \frac{1}{1000}, \quad \rho = 10^{-12},$$
$$m_1^0(x) = \begin{cases} 1, & x \le 0.3 \text{ and } |y| \le 0.0125, \\ 0, & \text{else,} \end{cases} \qquad m_2^0 = 0.$$

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

Biological Transportation Networks 24

Initial pressure: max $c|\nabla p| = 7926.36$

iving knowledg

Near stationary state; $\gamma = 1$

iving knowlec

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

Biological Transportation Networks 26

Near stationary state; $\gamma = 3/4$

ving knowledg

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

Near stationary state; $\gamma = 3/5$

ving knowledg

Comparison mesh dependency

Biological Transportation Networks 29

Comparison mesh dependency; $\gamma = 1/2$

 $D \ll 1 \rightarrow$ microscopic effects defined by the underlying triangulation.

Comparison mesh dependency diffusion

IIF, D = 1/400, r = 3/4.

0.8 0.6

0.4

0.2

-0.2

-0.4

-0.6 -0.8

Other schemes

- higher-order IMEX schemes: ^{a b}
 - treat $f_{\gamma,c}(m, \nabla p)$ explicitly.
 - at each stage evaluate $f_{\gamma,c}(m, \nabla p)$ (solve PDE for $p_{\text{gg}_{10}}$ in [u] @22.1115 gamma=0.75
- Implicit integrating factor method (IIF): ^c
 - treats Δm exactly (matrix exponential).
 - treats $f_{\gamma,c}(m, \nabla p)$ implicitly.
 - updates require nonlinear solver.
 - fixed-points ~> contraction property.
- Other splittings (future work). Split
 - $\Delta m, c \nabla p \otimes c \nabla p$: stiff, but differentiable.
 - -1 L 0 • $|m|^{2\gamma}$: convex optimization ($\gamma = 1/2$: shrinkage).

^cQ, Nie, Y.-T. Zhang, R. Zhao; Efficient semi-implicit schemes for stiff systems, JCP 214 (2006); 521–537

Conclusions

- Derived a model for network adaptation and formation.
- Proposed a numerical method for simulation.
- First numerical results show the potential of the model.
- For small diffusion, it is likely that we solve a microscopic model.

Open/Future work

- More efficient numerical schemes.
- Regularity of the continuous solution.
- Source identification.

Acknowledgement

Financial support from the

European Research Council

Established by the European Commission

through grant EU FP 7 - ERC Consolidator Grant 615216

Variational Methods for Dynamic Inverse Problems in the Life Sciences is gratefully acknowledged