Challenges in Microscopy Big Data

Leila Mureşan

Cambridge Advanced Imaging Centre

March, 2016

Outline

1 Introduction

- Light sheet microscopy
- Super-resolution microscopy

Motivation

Main challenge in fluorescence microscopy

Fluorescence microscopy

Principle

- ► Fluorescent dyes are added to the sample.
- ► The dyes are excited by a source of illumination of a given wavelength
- The dyes are emitting at a longer wavelength and their response is registered by a CCD camera
- ► After several emission cycles, the dyes bleach
- ► Phototoxicity Excited fluorescent molecules tend to react with oxygen, producing free radicals that can damage the cell

Lichtman J. and Conchello J.-A., Fluorescence Microscopy,

Nature Methods, vol. 2, 2006

Image formation

Point spread function

The image of a point source is the point spread function. Fluorophores can be regarded as point sources.

Theoretical models of PSF

- Richards-Wolf model
- Gibson-Lanni model

Approximations of PSF

Airy pattern

"All models are wrong, but some are useful." (G. Box)

• Airy function $\operatorname{PSF}(r) = \left(2\frac{J_1(\pi q_c r)}{\pi q_c r}\right)^2, \ q_c = \frac{2NA}{\lambda}$

• Gaussian:
$$G(r) = e^{-\left(\frac{r^2}{2a^2}\right)}$$

• modified Lorentzian: $L(r) = \frac{1}{1 + \left(\frac{r^2}{a^2}\right)^b}$

• Moffat:
$$M(r) = \frac{1}{\left(1 + \frac{r^2}{a^2}\right)^b}$$

Resolution limits

Rayleigh criterion

Two point sources are regarded as just resolved when the principal diffraction maximum of one image coincides with the first minimum of the other.

$$R = \frac{0.61\lambda}{NA}$$

Novel technology

- ► Light sheet microscopy E. Steltzer principle: Zsigmondy (1925)
- Super-resolution fluorescence microscopy
 E. Betzig, S.W. Hell, W.E. Moerner Nobel prize for chemistry 2014

These techniques imply huge increase in data and computation needs.

Light sheet fluorescence microscopy

- Illumination with beams collimated in one and focused in the other direction
- No fluorophores are excited outside the detectors' focal plane, no out-of-focus light (intrinsic optical sectioning) and less photodamage

Illustration: Ruth Simms (CAIC)

Light sheet fluorescence microscopy

Advantages

- ▶ Speed: ~ 800 *MB* frame/s , ~ 100 frame/s (limited by the camera). Results in huge amount of data.
- ▶ Parsimonious, efficient illumination

Resolution

Conventional confocal microscope

- ► Lateral (x y) resolution limit: $\lambda/(2NA)$ (~ 200 nm)
- Axial (z) resolution limit: $2n\lambda/NA^2$ (~ 500 nm)

Light sheet microscope microscope

- ▶ The axial resolution is dominated by the thickness of the light sheet and is less affected by the PSF defined by the NA of the detection lens.
- ▶ The isotropy of the PSF is much better than other microscopes for low NA systems

What is "nanoscopy"?

Super-resolution light microscopy

- Photo-activated localization microscopy (PALM)
- Stochastic optical reconstruction microscopy (STORM)
- ▶ Other (STED, SIM)

Characteristics (STORM/PALM)

- Fluorophores are stochastically alternating between active and dark state
- Single, well-separated fluorophores are imaged
- Algorithms localize with high precision individual fluorophores in images

T. J. Gould, V. V. Verkhusha, S.T. Hess, Nature Protocols 4, 291-308 (2009).

2d and 3d superresolution

Zeiss-campus

The image of the single molecule is the same at a distance d below and above the focal plane.

To gain information on z-position from the PSF shape: the symmetry has to be broken!

3d super-resolution via a cylindrical lens

B. Huang, W. Wang, M. Bates, X. Zhuang, "Three-dimensional Super-resolution Imaging by Stochastic Optical Reconstruction Microscopy", Science 319, 810-813 (2008)

Engineered point spread function

Double helix PSF

- spatially rotating point-spread functions (depth from diffracted rotation)
- inspired from depth from defocus techniques (circular aperture)

A SM near focus in a DH microscope appears as two spots on a detector. Lateral (x, y) position of the SM - the midpoint between spots Axial(z) position - the angle of the line connecting the two spots and a fixed orientation (calibration measurement).

S.R. Prasanna Pavani, M.A. Thompson, et al. - Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function PNAS, vol.106, no.9, pp. 2995-2999, 2009

Super-resolution microscopy

Resolution: Double helix PSF

In thick samples, superlocalization of single fluorescent molecules with precisions as low as 10 nm laterally and 20 nm axially over axial ranges $\sim 2\mu m$

(Moerner, PNAS, 2009)

Goal: Combining the two techniques (light sheet and super resolution) Need for fast and accurate image analysis algorithms!

EasyDHPSF

Outline

Introduction

- Light sheet microscopy
- Super-resolution microscopy

Existing analysis: EasyDHPSF algorithm

Step 1: Detection

- ▶ Each template is phase correlated with the image
- ▶ The correlations are combined
- ▶ Peaks in the combined correlated image are validated to filter out extraneous matches.

Step 2: Fitting

Least-squares fitting of a double-Gaussian function: robust to low signal, high background, optical aberrations, sample drift, or any combination of experimental non-idealities

M.D. Lew, A.R.S. von Diezmann, W.E. Moerner - Easy-DHPSF open-source software for three-dimensional localization of single molecules with precision beyond the optical diffraction limit, Protocol Exchange, 2013

Existing analysis: EasyDHPSF algorithm

User-friendly, good documentation!

Performance:

- $\blacktriangleright~15-30$ molecules per second on a 3 GHz Intel Core 2 Duo workstation
- ▶ 3D super-resolution reconstruction of 100,000 molecules over a 20 × 20 × 2µm field of view (processing 128 × 128 pixels ×20000 frames) in 75 min.

Parameters:

▶ Six thresholds have to be selected by the user (one for each template)

EasyDHPSF

Existing analysis: EasyDHPSF algorithm

Parameter adjustment

template 2	template 2 threshold 36.png	template 2 threshold 37,png	template 2 threshold 38.png	template 2 threshold 39 prop	template 2 threshold 40 prop	template 2 threshold 41 pro	template 2 threshold 42 pro	template 2 threshold 43.prg	template 2	template 2 threshold 45.png	template 2 threshold 45.png	template 2 threshold 47.png	template 2 threshold 48.png	template 2 threshold 49 page	template 2 threshold 50 pro
template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2
threshold 51.pmg	threshold 52.png	threshold 53.png	threshold 54.png	threshold 55 png	threshold 56 pmg	threshold \$7.png	threshold 58.png	threshold 59.png	threshold 60.png	threshold 61.png	threshold 62.png	threshold 63.png	threshold 64 page	threshold 65.png	threshold 66.png
template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2
threshold 67.png	threshold 68.png	threshold 60.png	threshold 70.png	threshold 71.png	threshold 72.png	threshold 73.png	threshold 74.png	threshold 75.png	threshold 76.png	threshold 77.png	threshold 78.png	threshold 79.png	threshold 80.png	threshold 81.png	threshold 82.png
template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2
threshold 83.png	threshold 84.png	threshold 85.png	threshold 86.png	threshold 87.png	threshold 88.png	threshold 89.png	threshold 90.png	threshold 91.png	threshold 92.png	threshold 93.png	threshold 94.png	threshold 95.png	threshold 96.png	threshold 97.png	threshold 98.png
template 2 threshold 99.png	template 2 threshold 100.png	template 2 threshold 101.png	template 2 threshold 102.png	template 2 threshold 103.png	template 2 threshold 104.png	template 2 threshold 105.png	template 2 threshold 105.png	template 2 threshold 107.png	template 2 threshold 108.png	template 2 threshold 109.png	template 2 threshold 110.png	template 2 threshold 111.prg	template 2 threshold 112.png	template 2 threshold 113.png	template 2 threshold 114.png
template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2
threshold	threshold	threshold	threshold	threshold	threshold	threshold	threshold	threshold	threshold	threshold	threshold	threshold	threshold	threshold	threshold
template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2
threshold	threshold	threshold	threshold	threshold	threshold	threshold	threshold	threshold	threshold	threshold	threshold	threshold	threshold	threshold	threshold
template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2	template 2
threshold 151 non	threshold 152 per	threshold 155 perce	threshold 156 peop	threshold	threshold	threshold	threshold	threshold 161 peop	threshold	threshold 164 percent	threshold 165 peop	threshold 166 peop	threshold	threshold	threshold

Outline

Introduction

- Light sheet microscopy
- Super-resolution microscopy

2 EasyDHPSF

Axial calibration from orientation information

Calibration on beads: 41 z-steps at 0.1 μm , 10 acquisitions per step Expected result: linear dependence

Quantum dots

Average of 200 images of quantum dots and the respective fitted positions

Comparison of reconstructions

EasyDHPSF

Our algorithm.

Acknowledgements

- ► Cambridge Advanced Imaging Centre: Kevin O'Holleran, Martin Lenz
- ▶ Department of Chemistry: A. Carr, J. Godet, M. Palayret, M. Bongiovanni, S.F.Lee, D.Klenerman

Thank you!