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Motivation	



Why	do	we	still	need	research	on	secure	channels?	

•  Secure	communications	is	still	the	most	common	
real-world	application	of	cryptography	today.	

•  SSL/TLS,	DTLS,	IPsec,	SSH,	OpenVPN,…	
•  WEP/WPA/WPA2	
•  GSM/UMTS/4g/LTE	
•  Cryptocat,	OTR,	SilentCircle,	OpenPGP,	iMessage,	

Telegram,	Signal,	and	a	thousand	other	messaging	apps		
•  QUIC,	MinimalT,	TCPcrypt	

3	3	



Why	do	we	still	need	research	on	secure	channels?	

•  Secure	communications	is	still	the	most	common	
real-world	application	of	cryptography	today.	

•  SSL/TLS,	DTLS,	IPsec,	SSH,	OpenVPN,…	

•  WEP/WPA/WPA2	

•  GSM/UMTS/4g/LTE	

•  Cryptocat,	OTR,	SilentCircle,	OpenPGP,	iMessage,	
Telegram,	Signal,	and	a	thousand	other	messaging	apps		

•  QUIC,	MinimalT,	TCPcrypt	

•  Bottom	line:	it	might	be	boring,	but	we	keep	
getting	this	wrong,	and	it’s	not	clear	we’re	getting	
any	better	at	it.	
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Overview	

•  Secure	channels	and	their	properties	
•  AEAD	
•  AEAD	≠	secure	channel	

•  SSH	and	TLS	examples	

•  Building	better	models	

•  Closing	remarks	
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Secure	channels	and	their	properties	



Security	properties	

	

•  Confidentiality	–	privacy	for	data	
•  Integrity	–	detection	of	data	modification	

•  Authenticity	–	assurance	concerning	the	source	of	
data	
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Some	less	obvious	security	properties	

•  Anti-replay		
•  Detection	that	messages	have	been	repeated.	

•  Detection	of	deletion	
•  Detection	that	messages	have	been	deleted	by	the	

adversary	or	dropped	by	the	network.	

•  Detection	of	re-0rdering	
•  Ensuring	that	the	relative	order	of	messages	in	each	

direction	on	the	secure	channel	is	preserved.	
•  Possibly	re-ordering	the	event	of	violation.	

•  Prevention	of	traffic-analysis.	
•  Using	traffic	padding	and	length-hiding	techniques.	
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Possible	functionality	requirements	

•  Speedy	
•  Low-memory	

•  On-line/parallelisable	crypto-operations	
•  Performance	is	heavily	hardware-dependent.	

•  May	have	different	algorithms	for	different	platforms.	

•  IPR-friendly	
•  This	issue	has	slowed	down	adoption	of	many	

otherwise	good	algorithms,	e.g.	OCB.	

•  Easy	to	implement		
•  Without	introducing	any	side-channels.	
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Additional	requirements	

•  We	need	a	clean	and	well-defined	API.	

•  Because	the	reality	is	that	our	secure	channel	protocol	
will	probably	be	used	blindly	by	a	security-naïve	
developer.	

•  Developers	want	to	“open”	and	“close”	secure	
channels,	and	issue	“send”	and	“recv”	commands.	

•  They’d	like	to	simply	replace	TCP	with	a	“secure	TCP”	
having	the	same	API.	

•  Or	to	just	have	a	black-box	for	delivering	messages	
securely.	
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Additional	API-driven	requirements	

•  Does	the	channel	provide	a	stream-based	functionality	or	a	
message-oriented	functionality?	

•  Does	the	channel	accept	messages	of	arbitrary	length	and	perform	
its	own	fragmentation	and	reassembly,	or	is	there	a	maximum	
message	length?	

•  How	is	error	handling	performed?	Is	a	single	error	fatal,	leading	to	
tear-down	of	channel,	or	is	the	channel	tolerant	of	errors?	

•  How	are	these	errors	signalled	to	the	calling	application?	How	
should	the	programmer	handle	them?	

•  Does	the	secure	channel	itself	handle	retransmissions?	Or	is	this	left	
to	the	application?	Or	is	it	guaranteed	by	the	underlying	network	
transport?	

•  Does	the	channel	offer	data	compression?	
•  These	are	design	choices	that	all	impact	on	security	
•  They	are	not	well-reflected	in	the	basic	security	definitions	for	

symmetric	encryption	
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AEAD	



Security	for	Symmetric	Encryption	
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Security	for	Symmetric	Encryption	–	Confidentiality	

16	

c1	

c2	

K	 K	
Ch	

c1	=	EncK(m1)	
	

m2	=	DecK(c2)	
	

m1	=	DecK(c1)	
	

c2	=	EncK(m2)	
	

Enc	Oracle	

learn	b	in	{0,1}	from	
c*	=	EncK(mb)			

IND-CPA	
(Goldwasser-Micali,	1984;	
Bellare-Desai-Jokipii-Rogaway,	1997).	
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Security	for	Symmetric	Encryption	–	Integrity	

18	

c1	

c2	

K	 K	
Ch	

c1	=	EncK(m1)	
	

m2	=	DecK(c2)	
	

m1	=	DecK(c1)	
	

c2	=	EncK(m2)	
	

Is	this	what	you	wrote?	



Security	for	Symmetric	Encryption	–	Integrity	
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Security	for	Symmetric	Encryption	–	Integrity	
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Security	for	Symmetric	Encryption	–	AE	
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Security	for	Symmetric	Encryption	–	AEAD	
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(Rogaway	2002)	



Which	came	first?	

Security	for	Symmetric	Encryption	–		stateful	AEAD	
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Security	for	Symmetric	Encryption	–		stateful	AEAD	
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Security	for	Symmetric	Encryption	–		stateful	AEAD	

25	

c1	

c2	

K	 K	
Ch	

c1	=	EncK(AD1,m1)	
	

m2	=	DecK(AD2,c2)	
	
m3	=	DecK(AD3,c3)	
	

m1	=	DecK(AD1,c1)	
	

c2	=	EncK(AD2,m2)	
	
c3	=	EncK(AD3,m3)	
	

c3	

Enc	Oracle	 Dec	Oracle	

learn	b	in	{0,1}	from	c*	=	
EncK(mb)	or	come	up	with	

valid/out	of	order	c*			

IND-sfCCA	
	 	 	 	 							(Bellare-Kohno-Namprempre,	2002)	

INT-sfCTXT	
	

INT-sfPTXT		
(Brzuska-Smart-Warinschi-Watson,	2013)	

Stateful	AEAD	



Security	for	Symmetric	Encryption	–	nonce-based	AEAD	
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Enc	and	Dec	can	now	be	stateless	and	deterministic	

(Rogaway	2004)	



CAESAR	

27	

•  CAESAR:	Competition	for	Authenticated	Encryption:	
Security,	Applicability,	and	Robustness.	

•  Initiated	by	Dan	Bernstein,	supported	by	committee	
of	experts.	

•  Main	goal	is	the	design	of	a	portfolio	of	AE	schemes.	
•  CAESAR	has	involved	dozens	of	person-years	of	effort	

and	led	to	a	major	uptick	in	research	activity.			

•  It	seems	that	most	of	the	cryptographic	community	
has	settled	on	nonce-based	AEAD	as	their	design	
target.	

	
	



AEAD	≠	secure	channel	



AEAD	≠	secure	channel	

•  Recall	our	application	developer:	
•  He	wants	a	drop-in	replacement	for	TCP	that’s	secure.	

•  Actually,	he	might	just	want	to	send	and	receive	some	
atomic	messages	and	not	a	TCP-like	stream.	

•  To	what	extent	does	AEAD	meet	these	requirements?	

•  It	doesn’t…	
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AEAD	≠	secure	channel	

There’s	a	significant	semantic	gap	between	AEAD’s	functionality	
and	raw	security	guarantees,	and	the	things	a	developer	expects	a	

secure	channel	to	provide.	
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First	example:	SSH	Binary	Packet	Protocol	(RFC	4253)	

•  Encode-then-E&M	construction,	stateful	because	of	inclusion	of	4-byte	sequence	
number.	

•  Packet	length	field	measures	the	size	of	the	packet:	|PadLen|+	|Payload|	+	|Padding|.	
•  Encrypted,	so	sequence	of	encrypted	packets	looks	like	a	long	string	of	random	bytes.	

•  Encryption	options	in	RFC	4253:	CBC	mode;	RC4.	
•  AES-CTR	defined	in	RFC	4344.		31	
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PRF-MAC 

Payload 

Ciphertext MAC tag 
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Number 4 
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Len 1 

Padding 
 ≥4 



First	example:	SSH	Binary	Packet	Protocol	(RFC	4253)	

•  How	does	decryption	work?	
•  Recall:	receiver	gets	a	stream	of	bytes,	and	a	single	ciphertext	can	be	fragmented	

over	several	TCP	messages.	
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Payload 

Ciphertext MAC tag 
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Number 4 
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Len 1 

Padding 
 ≥4 



Breaking	CBC	mode	in	SSH	[APW09]	
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Ci-1
* Ci
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Target	ciphertext		
block	from	stream	

Target	plaintext	
in	attack	



Breaking	CBC	mode	in	SSH	[APW09]	

34	

IV Ci
* 

P0
’ 

dK 

•  The	receiver	will	treat	the	first	32	bits	of	the	calculated	plaintext	block	
as	the	packet	length	field	for	the	new	packet.	

•  Here:	
	 	 	P0’	=	IV		⊕		dK(Ci*)	
where	IV	is	known.	

Target	ciphertext		
block	from	stream	

Length	field		



Breaking	CBC	mode	in	SSH	[APW09]	
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IV Ci
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P0
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dK 

R R 

P2’ 

dK dK 

P1’ 

	The	attacker	then	feeds	random	blocks	to	the	receiver	
–  One	block	at	a	time,	waiting	to	see	what	happens	at	the	server	

when	each	new	block	is	processed	
–  This	is	possible	because	SSH	runs	over	TCP	and	tries	to	do	online	

processing	of	incoming	blocks	



Breaking	CBC	mode	in	SSH	[APW09]	
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IV Ci
* 

P0
’ 

dK 

•  Once	enough	data	has	arrived,	the	receiver	will	receive	what	it	thinks	is	
the	MAC	tag	
–  The	MAC	check	will	fail	with	overwhelming	probability	
–  Consequently	the	connection	is	terminated	(with	an	error	message)	

•  How	much	data	is	“enough”	so	that	the	receiver	decides	to	check	the	
MAC?	

•  Answer:	whatever	is	specified	in	the	length	field:	

R R 

P2’ 

dK dK 

P1’ 

MAC tag 



Breaking	CBC	mode	in	SSH	[APW09]	
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IV Ci
* 

P0
’ 

dK 

Ci-1
* Ci

* 

Pi
* 

dK 

•  Knowing	IV	and	32	bits	of	P0
’,	the	attacker	can	now	recover	

32	bits	of	the	target	plaintext	block	Pi
*:	

	 	 	Pi
*	=	Ci-1

*	⊕	dK(Ci
*)	=	Ci-1

*	⊕	IV	⊕	P0
’	

	

•  Attack	is	slightly	different	in	practice:	implementation-
specific	length	checks.		



Security	Modelling	Implications?	

•  The	attack	works	with	random	IVs	too,	invalidating	
the	security	proof	in	[BKN02].	

•  The	stateful	AE	notions	used	in	[BKN02]	were	for	
atomic	ciphertext	processing.	

•  But	SSH	permits	fragmented	delivery	of	ciphertexts.	

• Oops!	
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Countermeasures	to	the	attack	

•  Abandon	CBC-mode?		
•  Alternatives	available	at	that	time:	CTR,	RC4.	

•  Dropbear	implemented	CTR	and	relegated	CBC	mode	in	version	0.53.	

•  Patch	CBC-mode?	
•  Versions	prior	to	OpenSSH5.1	affected.	

•  OpenSSH5.2	also	introduced	a	patch	to	stop	the	specific	attack	on	CBC	
mode.	

•  Develop	new	modes?	
•  Modes	based	on	Generic	EtM,	AES-GCM,	ChaCha20-Poly1305	were	

subsequently	added	to	OpenSSH.	

•  Mode	proliferation!	
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AEAD	in	SSH	today?	

•  In	[ADHP16],	we	perform	a	measurement	study	of	SSH	
deployment.	

•  We	conducted	two	IPv4	address	space	scans	in	Nov/Dec	
2015	and	Jan	2016	using	ZGrab/ZMap.	

•  Grabbing	banners	and	SSH	servers’	preferred	ciphers.	
•  Actual	cipher	used	in	a	given	SSH	connection	depends	on	client	

and	server	preferences.	

•  Roughly	224	servers	found	in	each	scan.	

•  Nmap	fingerprinting	suggests	mostly	embedded	routers,	
firewalls.	
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The	state	of	AEAD	in	SSH	today:	SSH	versions	
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The	state	of	AEAD	in	SSH	today:	SSH	versions	
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Dropbear	at	56-58%.	
886,000	older	than	
version	0.53,	so	

vulnerable	to	variant	of	
2009	CBC-mode	attack!			



The	state	of	AEAD	in	SSH	today:	SSH	versions	
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OpenSSH	at	37-39%.	
130,000-166,000	older	
than	version	5.2	and	
prefer	CBC	mode,	so	
vulnerable	to	2009	

attack!			



The	OpenSSH	patch	

• OpenSSH	patch,	in	version	5.2	and	up:	
•  If	the	length	checks	fail,	do	not	send	an	error	message,	but	

wait	until	218	bytes	have	arrived,	then	check	the	MAC.	

•  If	the	length	checks	pass,	but	the	MAC	check	eventually	
fails,	then	wait	until	218	bytes	have	arrived,	then	check	the	
MAC.	

•  One	MAC	check	is	done	if	length	checks	fail:	on	218	
bytes.	

•  Two	MAC	checks	are	done	if	length	checks	pass:	one	
on	roughly	LF	bytes,	the	other	on	218	bytes.	
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Attacking	the	OpenSSH	patch	[ADHP16]	

•  This	leads	to	a	timing	attack	on	CBC	mode	in	
OpenSSH5.2	and	up,	recovering	up	to	30	bits	of	
plaintext	from	target	block	[ADHP16].	

•  Size	of	timing	difference:		

•  A	MAC	computation	on	roughly	217	bytes	(the	expected	
value	of	LF).	

•  About	2000	times	bigger	than	the	Lucky	13	timing	
difference!	

•  Affects	roughly	20,000	OpenSSH	servers.	
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Disclosure	of	the	attack	

•  We	notified	the	OpenSSH	team	of	the	attack	on	5th	May	2016.	

•  They	are	considering	adding	countermeasures	for	the	next	release	of	
OpenSSH	(7.3).	

•  “…we	do	not	feel	that	an	emergency	release	is	necessary,	nor	that	
the	attack	remain	secret	ahead	of	such	a	release.”	

•  OpenSSH	has	steadily	been	deprecating	old	algorithms	and	modes.	

•  CBC	mode	was	already	disabled	by	default	in	OpenSSH	6.7	(but	can	
be	re-enabled).		

•  But	OpenSSH	cannot	force	people	to	stop	using	old	versions	of	the	
software.	

•  The	legacy	problem	–	not	unique	to	SSH.	
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Second	example:	cookie	cutters	

Bhargavan,	Delignat-Lavaud,	Fournet,	Pironti,	Strub	2014:	cookie	
cutter	attack	on	“HTTP	over	SSL/TLS”.	

•  Attacker	forces	part	of	the	HTTP	header	(e.g.,	cookie)	to	be	cut	off.	
•  Partial	message/header	arrives	and	might	be	misinterpreted.	
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c=	Enc(Set-Cookie: SID=[AuthenticationToken]; secure)	
Ch	

Set-Cookie: SID=[AuthenticationToken] 	



Cookie	cutters	

Why	doesn’t	this	violate	the	proven	integrity	of	SSL/TLS	
encryption?	

6.2.1. Fragmentation 

The record layer fragments information blocks 
into TLSPlaintext records [...].  Client 
message boundaries are not preserved in the 
record layer (i.e., multiple client messages 
of the same ContentType MAY be coalesced into 
a single TLSPlaintext record, or a single 
message MAY be fragmented across several 
records). 

RFC	5246	(TLS	v1.2)	
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Cookie	cutters	

Why	doesn’t	this	violate	the	proven	integrity	of	SSL/TLS	
encryption?	

6.2.1. Fragmentation 

The record layer fragments information blocks 
into TLSPlaintext records [...].  Client 
message boundaries are not preserved in the 
record layer (i.e., multiple client messages 
of the same ContentType MAY be coalesced into 
a single TLSPlaintext record, or a single 
message MAY be fragmented across several 
records). 

RFC	5246	(TLS	v1.2)	
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Cookie	cutters	

•  So	SSL/TLS	can	(and	will)	fragment	when	sending.	
•  Compare	to	SSH	that	has	to	deal	with	fragments	only	when	
receiving.	

•  Both	protocols	provide	a	streaming	interface	to	applications,	
not	a	message-oriented	one.	
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Set-Cookie:  
SID=[AuthToken];  
secure	

Ch	
Set-
Cookie: 
SID = … 

Set-Cookie:  
SID=[AuthToken]  

2	TLS	records	



Cookie	cutters	

•  It’s	up	to	the	calling	application	to	deal	with	message	boundaries	if	it	
wants	to	use	SSL/TLS	for	atomic	message	delivery.	

•  Cookie	cutter	attack	relies	on	a	buggy	browser	that	does	not	check	
for	correct	HTTP	message	termination.	

•  This	happens	in	practice	–it	seems	that	developers	do	not	understand	
the	interface	provided	by	SSL/TLS?	
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Set-Cookie:  
SID=[AuthToken];  
secure	

Ch	
Set-
Cookie: 
SID = … 

Set-Cookie:  
SID=[AuthToken]  



Building	Better	Models	



Motivation:	AEAD	in	OpenSSH	today	
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OpenSSH preferred algorithms 

•  Lots	of	diversity,	surprising	amount	of	“generic	EtM”	(gEtM).	

•  CTR	dominates,	followed	by	CBC.	

•  ChaCha20-Poly1305	on	the	rise?	(became	default	in	OpenSSH	6.9).		

•  Small	amount	of	GCM.	

	



Analysis	of	SSH-CTR	

•  [PW10]	developed	a	bespoke	security	model	for	CTR	mode	
in	SSH	and	proved	it	secure	(assuming	block	cipher	is	a	
PRP).	

•  The	model	allows	the	attacker	to	deliver	ciphertexts	to	
decryption	oracle	in	a	byte-by-byte	fashion.	

•  Accurately	models	OpenSSH’s	CTR	mode	implementation.	

•  Sanity	checking	of	length	field,	with	related	error	messages,	MAC	
failures,	etc.	

•  Complex	pseudo-code	descriptions	of	algorithms	and	oracles.	
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Symmetric	Encryption	Supporting	Fragmented	
Decryption	

•  [BDPS12]	developed	a	general	framework	for	
studying	“Symmetric	Encryption	schemes	supporting	
fragmented	decryption”	like	SSH.	

•  Their	IND-CFA	model	allows	the	attacker	to	deliver	
ciphertext	to	a	decryption	oracle	in	a	symbol-by-
symbol	fashion	and	observe	any	errors/message	
outputs.	

•  [BDPS12]	also	identified	additional	security	properties	
that	SSH	attempts	to	provide:	
•  Boundary	Hiding	(BH)	and	Denial-of-Service	resistance.	
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Developing	and	Using	the	Models		

•  [FGMP15]	developed	a	framework	for	studying	Streaming	
Secure	Channels	like	TLS,	which	permit	fragmentation	
both	in	sending	and	receiving.	
•  cf.	work	on	TLS	mentioned	by	Cedric	Fournet	this	morning.	

•  Cryptographic-game-based	rather	than	type-based.	

•  [ADHP16]	uses	the	framework	of	[BDPS12]	to	study	gEtM,	
AES-GCM,	and	ChaCha20-Poly1305	in	OpenSSH.	
•  Identifies	a	bug	in	the	[BDPS12]	security	model.	

•  Proves	security	of	all	modes.	

•  Finds	an	error	in	gEtM:	MAC	computed	before	decryption	but	not	
checked	until	after	decryption!	
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ChaCha20-Poly1305	in	OpenSSH	
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Closing	remarks	

•  Simple	security	models	for	symmetric	encryption	
versus	complex	security	properties	desired	of	secure	
channels.	

•  There	is	still	a	rich	research	seam	to	mine	here.	

	

“Now	this	is	not	the	end.	It	is	not	even	the	beginning	of	
the	end.	But	it	is,	perhaps,	the	end	of	the	beginning.”	
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Closing	remarks	
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