
Secure	Channels	–	Are	We	
There	Yet?	

Kenny	Paterson	

Information	Security	Group	

@kennyog;	www.isg.rhul.ac.uk/~kp	



Motivation	



Why	do	we	still	need	research	on	secure	channels?	

•  Secure	communications	is	still	the	most	common	
real-world	application	of	cryptography	today.	

•  SSL/TLS,	DTLS,	IPsec,	SSH,	OpenVPN,…	
•  WEP/WPA/WPA2	
•  GSM/UMTS/4g/LTE	
•  Cryptocat,	OTR,	SilentCircle,	OpenPGP,	iMessage,	

Telegram,	Signal,	and	a	thousand	other	messaging	apps		
•  QUIC,	MinimalT,	TCPcrypt	

3	3	



Why	do	we	still	need	research	on	secure	channels?	

•  Secure	communications	is	still	the	most	common	
real-world	application	of	cryptography	today.	

•  SSL/TLS,	DTLS,	IPsec,	SSH,	OpenVPN,…	

•  WEP/WPA/WPA2	

•  GSM/UMTS/4g/LTE	

•  Cryptocat,	OTR,	SilentCircle,	OpenPGP,	iMessage,	
Telegram,	Signal,	and	a	thousand	other	messaging	apps		

•  QUIC,	MinimalT,	TCPcrypt	

•  Bottom	line:	it	might	be	boring,	but	we	keep	
getting	this	wrong,	and	it’s	not	clear	we’re	getting	
any	better	at	it.	

4	4	



Overview	

•  Secure	channels	and	their	properties	
•  AEAD	
•  AEAD	≠	secure	channel	

•  SSH	and	TLS	examples	

•  Building	better	models	

•  Closing	remarks	

5	



Secure	channels	and	their	properties	



Security	properties	

	

•  Confidentiality	–	privacy	for	data	
•  Integrity	–	detection	of	data	modification	

•  Authenticity	–	assurance	concerning	the	source	of	
data	

7	7	



Some	less	obvious	security	properties	

•  Anti-replay		
•  Detection	that	messages	have	been	repeated.	

•  Detection	of	deletion	
•  Detection	that	messages	have	been	deleted	by	the	

adversary	or	dropped	by	the	network.	

•  Detection	of	re-0rdering	
•  Ensuring	that	the	relative	order	of	messages	in	each	

direction	on	the	secure	channel	is	preserved.	
•  Possibly	re-ordering	the	event	of	violation.	

•  Prevention	of	traffic-analysis.	
•  Using	traffic	padding	and	length-hiding	techniques.	

8	8	



Possible	functionality	requirements	

•  Speedy	
•  Low-memory	

•  On-line/parallelisable	crypto-operations	
•  Performance	is	heavily	hardware-dependent.	

•  May	have	different	algorithms	for	different	platforms.	

•  IPR-friendly	
•  This	issue	has	slowed	down	adoption	of	many	

otherwise	good	algorithms,	e.g.	OCB.	

•  Easy	to	implement		
•  Without	introducing	any	side-channels.	

9	9	



Additional	requirements	

•  We	need	a	clean	and	well-defined	API.	

•  Because	the	reality	is	that	our	secure	channel	protocol	
will	probably	be	used	blindly	by	a	security-naïve	
developer.	

•  Developers	want	to	“open”	and	“close”	secure	
channels,	and	issue	“send”	and	“recv”	commands.	

•  They’d	like	to	simply	replace	TCP	with	a	“secure	TCP”	
having	the	same	API.	

•  Or	to	just	have	a	black-box	for	delivering	messages	
securely.	

10	10	



Additional	API-driven	requirements	

•  Does	the	channel	provide	a	stream-based	functionality	or	a	
message-oriented	functionality?	

•  Does	the	channel	accept	messages	of	arbitrary	length	and	perform	
its	own	fragmentation	and	reassembly,	or	is	there	a	maximum	
message	length?	

•  How	is	error	handling	performed?	Is	a	single	error	fatal,	leading	to	
tear-down	of	channel,	or	is	the	channel	tolerant	of	errors?	

•  How	are	these	errors	signalled	to	the	calling	application?	How	
should	the	programmer	handle	them?	

•  Does	the	secure	channel	itself	handle	retransmissions?	Or	is	this	left	
to	the	application?	Or	is	it	guaranteed	by	the	underlying	network	
transport?	

•  Does	the	channel	offer	data	compression?	
•  These	are	design	choices	that	all	impact	on	security	
•  They	are	not	well-reflected	in	the	basic	security	definitions	for	

symmetric	encryption	
11	11	



AEAD	



Security	for	Symmetric	Encryption	

13	

m1	

m2	

Pictures	by	Giorgia	Azzurra	Marson	



Security	for	Symmetric	Encryption	

14	

m1	

m2	

K	 K	

KE	

Ch	



Security	for	Symmetric	Encryption	

15	

c1	

c2	

K	 K	
Ch	

c1	=	EncK(m1)	
	

m2	=	DecK(c2)	
	

m1	=	DecK(c1)	
	

c2	=	EncK(m2)	
	



Security	for	Symmetric	Encryption	–	Confidentiality	

16	

c1	

c2	

K	 K	
Ch	

c1	=	EncK(m1)	
	

m2	=	DecK(c2)	
	

m1	=	DecK(c1)	
	

c2	=	EncK(m2)	
	

Enc	Oracle	

learn	b	in	{0,1}	from	
c*	=	EncK(mb)			

IND-CPA	
(Goldwasser-Micali,	1984;	
Bellare-Desai-Jokipii-Rogaway,	1997).	



Security	for	Symmetric	Encryption	–	Confidentiality	

17	

c1	

c2	

K	 K	
Ch	

c1	=	EncK(m1)	
	

m2	=	DecK(c2)	
	

m1	=	DecK(c1)	
	

c2	=	EncK(m2)	
	

Enc	Oracle	

learn	b	in	{0,1}	from	
c*	=	EncK(mb)			

IND-CPA	
(Goldwasser-Micali,	1984;	
Bellare-Desai-Jokipii-Rogaway,	1997).	

Dec	Oracle	

IND-CCA	
(Naor-Yung,	1990;	

Rackoff-Simon,	1997).	



Security	for	Symmetric	Encryption	–	Integrity	

18	

c1	

c2	

K	 K	
Ch	

c1	=	EncK(m1)	
	

m2	=	DecK(c2)	
	

m1	=	DecK(c1)	
	

c2	=	EncK(m2)	
	

Is	this	what	you	wrote?	



Security	for	Symmetric	Encryption	–	Integrity	

19	

c1	

c2	

K	 K	
Ch	

c1	=	EncK(m1)	
	

m2	=	DecK(c2)	
	

m1	=	DecK(c1)	
	

c2	=	EncK(m2)	
	

Enc	Oracle	

come	up	with	valid	c*	

Dec	Oracle	

INT-CTXT	
(Bellare,	Rogaway,	2000)	



Security	for	Symmetric	Encryption	–	Integrity	

20	

c1	

c2	

K	 K	
Ch	

c1	=	EncK(m1)	
	

m2	=	DecK(c2)	
	

m1	=	DecK(c1)	
	

c2	=	EncK(m2)	
	

Enc	Oracle	

come	up	with	valid	c*	
for	a	new	m*	

	

Dec	Oracle	

INT-CTXT	
(Bellare,	Rogaway,	2000)	

INT-PTXT	
(Bellare-Namprempre,	2000)	



Security	for	Symmetric	Encryption	–	AE	

21	

c1	

c2	

K	 K	
Ch	

c1	=	EncK(m1)	
	

m2	=	DecK(c2)	
	

m1	=	DecK(c1)	
	

c2	=	EncK(m2)	
	

Enc	Oracle	 Dec	Oracle	

INT-CTXT	
(Bellare,	Rogaway,	2000)	

INT-PTXT	
(Bellare-Namprempre,	2000)	

Authenticated	Encryption	
IND-CPA	+	INT-CTXT	

(èIND-CCA)		



Security	for	Symmetric	Encryption	–	AEAD	

22	

c1	

c2	

K	 K	
Ch	

c1	=	EncK(AD1,m1)	
	

m2	=	DecK(AD2,c2)	
	

m1	=	DecK(AD1,c1)	
	

c2	=	EncK(AD2,m2)	
	

Enc	Oracle	 Dec	Oracle	

Authenticated	Encryption	with	Associated	Data		
AE	security	for	message	m	

Integrity	for	associated	data	AD	
Strong	binding	between	c	and	AD	

(Rogaway	2002)	



Which	came	first?	

Security	for	Symmetric	Encryption	–		stateful	AEAD	

23	

c1	

c2	

K	 K	
Ch	

c1	=	EncK(AD1,m1)	
	

m2	=	DecK(AD2,c2)	
	
m3	=	DecK(AD3,c3)	
	

m1	=	DecK(AD1,c1)	
	

c2	=	EncK(AD2,m2)	
	
c3	=	EncK(AD3,m3)	
	

c3	



Security	for	Symmetric	Encryption	–		stateful	AEAD	

24	

c1	

c2	

K	 K	
Ch	

c1	=	EncK(AD1,m1)	
	

m2	=	DecK(AD2,c2)	
	
m3	=	DecK(AD3,c3)	
	

m1	=	DecK(AD1,c1)	
	

c2	=	EncK(AD2,m2)	
	
c3	=	EncK(AD3,m3)	
	

c3	

Enc	Oracle	 Dec	Oracle	

learn	b	in	{0,1}	from	
c*	=	EncK(mb)			

IND-sfCCA	
	 	 	 	 							(Bellare-Kohno-Namprempre,	2002)	



Security	for	Symmetric	Encryption	–		stateful	AEAD	

25	

c1	

c2	

K	 K	
Ch	

c1	=	EncK(AD1,m1)	
	

m2	=	DecK(AD2,c2)	
	
m3	=	DecK(AD3,c3)	
	

m1	=	DecK(AD1,c1)	
	

c2	=	EncK(AD2,m2)	
	
c3	=	EncK(AD3,m3)	
	

c3	

Enc	Oracle	 Dec	Oracle	

learn	b	in	{0,1}	from	c*	=	
EncK(mb)	or	come	up	with	

valid/out	of	order	c*			

IND-sfCCA	
	 	 	 	 							(Bellare-Kohno-Namprempre,	2002)	

INT-sfCTXT	
	

INT-sfPTXT		
(Brzuska-Smart-Warinschi-Watson,	2013)	

Stateful	AEAD	



Security	for	Symmetric	Encryption	–	nonce-based	AEAD	

26	

c1	

c2	

K	 K	
Ch	

c1	=	EncK(N1,AD1,m1)	
	

m2	=	DecK(N2,AD2,c2)	
	

m1	=	DecK(N1,AD1,c1)	
	

c2	=	EncK(N2,AD2,m2)	
	

Enc	Oracle	 Dec	Oracle	

Nonce-based	Authenticated	Encryption	with	Associated	Data		
As	per	AEAD,	but	with	additional	input	N	to	Enc	and	Dec	algorithms	

Adversary	may	arbitrarily	specify	N,	but	“no	repeats”	rule	
Enc	and	Dec	can	now	be	stateless	and	deterministic	

(Rogaway	2004)	



CAESAR	

27	

•  CAESAR:	Competition	for	Authenticated	Encryption:	
Security,	Applicability,	and	Robustness.	

•  Initiated	by	Dan	Bernstein,	supported	by	committee	
of	experts.	

•  Main	goal	is	the	design	of	a	portfolio	of	AE	schemes.	
•  CAESAR	has	involved	dozens	of	person-years	of	effort	

and	led	to	a	major	uptick	in	research	activity.			

•  It	seems	that	most	of	the	cryptographic	community	
has	settled	on	nonce-based	AEAD	as	their	design	
target.	

	
	



AEAD	≠	secure	channel	



AEAD	≠	secure	channel	

•  Recall	our	application	developer:	
•  He	wants	a	drop-in	replacement	for	TCP	that’s	secure.	

•  Actually,	he	might	just	want	to	send	and	receive	some	
atomic	messages	and	not	a	TCP-like	stream.	

•  To	what	extent	does	AEAD	meet	these	requirements?	

•  It	doesn’t…	

29	



AEAD	≠	secure	channel	

There’s	a	significant	semantic	gap	between	AEAD’s	functionality	
and	raw	security	guarantees,	and	the	things	a	developer	expects	a	

secure	channel	to	provide.	

30	

m1	

m2	

Ch	Enc(.,.,.)	

Dec(.,.,.)	

+	



First	example:	SSH	Binary	Packet	Protocol	(RFC	4253)	

•  Encode-then-E&M	construction,	stateful	because	of	inclusion	of	4-byte	sequence	
number.	

•  Packet	length	field	measures	the	size	of	the	packet:	|PadLen|+	|Payload|	+	|Padding|.	
•  Encrypted,	so	sequence	of	encrypted	packets	looks	like	a	long	string	of	random	bytes.	

•  Encryption	options	in	RFC	4253:	CBC	mode;	RC4.	
•  AES-CTR	defined	in	RFC	4344.		31	

Encrypt 

PRF-MAC 

Payload 

Ciphertext MAC tag 

Sequence 
Number 4 

Packet 
Length 4 

Pad 
Len 1 

Padding 
 ≥4 



First	example:	SSH	Binary	Packet	Protocol	(RFC	4253)	

•  How	does	decryption	work?	
•  Recall:	receiver	gets	a	stream	of	bytes,	and	a	single	ciphertext	can	be	fragmented	

over	several	TCP	messages.	

32	

Encrypt 

PRF-MAC 

Payload 

Ciphertext MAC tag 

Sequence 
Number 4 

Packet 
Length 4 

Pad 
Len 1 

Padding 
 ≥4 



Breaking	CBC	mode	in	SSH	[APW09]	

33	

Ci-1
* Ci

* 

Pi
* 

dK 

Target	ciphertext		
block	from	stream	

Target	plaintext	
in	attack	



Breaking	CBC	mode	in	SSH	[APW09]	

34	

IV Ci
* 

P0
’ 

dK 

•  The	receiver	will	treat	the	first	32	bits	of	the	calculated	plaintext	block	
as	the	packet	length	field	for	the	new	packet.	

•  Here:	
	 	 	P0’	=	IV		⊕		dK(Ci*)	
where	IV	is	known.	

Target	ciphertext		
block	from	stream	

Length	field		



Breaking	CBC	mode	in	SSH	[APW09]	

35	

IV Ci
* 

P0
’ 

dK 

R R 

P2’ 

dK dK 

P1’ 

	The	attacker	then	feeds	random	blocks	to	the	receiver	
–  One	block	at	a	time,	waiting	to	see	what	happens	at	the	server	

when	each	new	block	is	processed	
–  This	is	possible	because	SSH	runs	over	TCP	and	tries	to	do	online	

processing	of	incoming	blocks	



Breaking	CBC	mode	in	SSH	[APW09]	

36	

IV Ci
* 

P0
’ 

dK 

•  Once	enough	data	has	arrived,	the	receiver	will	receive	what	it	thinks	is	
the	MAC	tag	
–  The	MAC	check	will	fail	with	overwhelming	probability	
–  Consequently	the	connection	is	terminated	(with	an	error	message)	

•  How	much	data	is	“enough”	so	that	the	receiver	decides	to	check	the	
MAC?	

•  Answer:	whatever	is	specified	in	the	length	field:	

R R 

P2’ 

dK dK 

P1’ 

MAC tag 



Breaking	CBC	mode	in	SSH	[APW09]	

37	

IV Ci
* 

P0
’ 

dK 

Ci-1
* Ci

* 

Pi
* 

dK 

•  Knowing	IV	and	32	bits	of	P0
’,	the	attacker	can	now	recover	

32	bits	of	the	target	plaintext	block	Pi
*:	

	 	 	Pi
*	=	Ci-1

*	⊕	dK(Ci
*)	=	Ci-1

*	⊕	IV	⊕	P0
’	

	

•  Attack	is	slightly	different	in	practice:	implementation-
specific	length	checks.		



Security	Modelling	Implications?	

•  The	attack	works	with	random	IVs	too,	invalidating	
the	security	proof	in	[BKN02].	

•  The	stateful	AE	notions	used	in	[BKN02]	were	for	
atomic	ciphertext	processing.	

•  But	SSH	permits	fragmented	delivery	of	ciphertexts.	

• Oops!	

38	



Countermeasures	to	the	attack	

•  Abandon	CBC-mode?		
•  Alternatives	available	at	that	time:	CTR,	RC4.	

•  Dropbear	implemented	CTR	and	relegated	CBC	mode	in	version	0.53.	

•  Patch	CBC-mode?	
•  Versions	prior	to	OpenSSH5.1	affected.	

•  OpenSSH5.2	also	introduced	a	patch	to	stop	the	specific	attack	on	CBC	
mode.	

•  Develop	new	modes?	
•  Modes	based	on	Generic	EtM,	AES-GCM,	ChaCha20-Poly1305	were	

subsequently	added	to	OpenSSH.	

•  Mode	proliferation!	

39	



AEAD	in	SSH	today?	

•  In	[ADHP16],	we	perform	a	measurement	study	of	SSH	
deployment.	

•  We	conducted	two	IPv4	address	space	scans	in	Nov/Dec	
2015	and	Jan	2016	using	ZGrab/ZMap.	

•  Grabbing	banners	and	SSH	servers’	preferred	ciphers.	
•  Actual	cipher	used	in	a	given	SSH	connection	depends	on	client	

and	server	preferences.	

•  Roughly	224	servers	found	in	each	scan.	

•  Nmap	fingerprinting	suggests	mostly	embedded	routers,	
firewalls.	

40	



The	state	of	AEAD	in	SSH	today:	SSH	versions	

41	



The	state	of	AEAD	in	SSH	today:	SSH	versions	

42	

Dropbear	at	56-58%.	
886,000	older	than	
version	0.53,	so	

vulnerable	to	variant	of	
2009	CBC-mode	attack!			



The	state	of	AEAD	in	SSH	today:	SSH	versions	

43	

OpenSSH	at	37-39%.	
130,000-166,000	older	
than	version	5.2	and	
prefer	CBC	mode,	so	
vulnerable	to	2009	

attack!			



The	OpenSSH	patch	

• OpenSSH	patch,	in	version	5.2	and	up:	
•  If	the	length	checks	fail,	do	not	send	an	error	message,	but	

wait	until	218	bytes	have	arrived,	then	check	the	MAC.	

•  If	the	length	checks	pass,	but	the	MAC	check	eventually	
fails,	then	wait	until	218	bytes	have	arrived,	then	check	the	
MAC.	

•  One	MAC	check	is	done	if	length	checks	fail:	on	218	
bytes.	

•  Two	MAC	checks	are	done	if	length	checks	pass:	one	
on	roughly	LF	bytes,	the	other	on	218	bytes.	

44	



Attacking	the	OpenSSH	patch	[ADHP16]	

•  This	leads	to	a	timing	attack	on	CBC	mode	in	
OpenSSH5.2	and	up,	recovering	up	to	30	bits	of	
plaintext	from	target	block	[ADHP16].	

•  Size	of	timing	difference:		

•  A	MAC	computation	on	roughly	217	bytes	(the	expected	
value	of	LF).	

•  About	2000	times	bigger	than	the	Lucky	13	timing	
difference!	

•  Affects	roughly	20,000	OpenSSH	servers.	

45	



Disclosure	of	the	attack	

•  We	notified	the	OpenSSH	team	of	the	attack	on	5th	May	2016.	

•  They	are	considering	adding	countermeasures	for	the	next	release	of	
OpenSSH	(7.3).	

•  “…we	do	not	feel	that	an	emergency	release	is	necessary,	nor	that	
the	attack	remain	secret	ahead	of	such	a	release.”	

•  OpenSSH	has	steadily	been	deprecating	old	algorithms	and	modes.	

•  CBC	mode	was	already	disabled	by	default	in	OpenSSH	6.7	(but	can	
be	re-enabled).		

•  But	OpenSSH	cannot	force	people	to	stop	using	old	versions	of	the	
software.	

•  The	legacy	problem	–	not	unique	to	SSH.	

46	



Second	example:	cookie	cutters	

Bhargavan,	Delignat-Lavaud,	Fournet,	Pironti,	Strub	2014:	cookie	
cutter	attack	on	“HTTP	over	SSL/TLS”.	

•  Attacker	forces	part	of	the	HTTP	header	(e.g.,	cookie)	to	be	cut	off.	
•  Partial	message/header	arrives	and	might	be	misinterpreted.	

47	

c=	Enc(Set-Cookie: SID=[AuthenticationToken]; secure)	
Ch	

Set-Cookie: SID=[AuthenticationToken] 	



Cookie	cutters	

Why	doesn’t	this	violate	the	proven	integrity	of	SSL/TLS	
encryption?	

6.2.1. Fragmentation 

The record layer fragments information blocks 
into TLSPlaintext records [...].  Client 
message boundaries are not preserved in the 
record layer (i.e., multiple client messages 
of the same ContentType MAY be coalesced into 
a single TLSPlaintext record, or a single 
message MAY be fragmented across several 
records). 

RFC	5246	(TLS	v1.2)	
48	



Cookie	cutters	

Why	doesn’t	this	violate	the	proven	integrity	of	SSL/TLS	
encryption?	

6.2.1. Fragmentation 

The record layer fragments information blocks 
into TLSPlaintext records [...].  Client 
message boundaries are not preserved in the 
record layer (i.e., multiple client messages 
of the same ContentType MAY be coalesced into 
a single TLSPlaintext record, or a single 
message MAY be fragmented across several 
records). 

RFC	5246	(TLS	v1.2)	
49	



Cookie	cutters	

•  So	SSL/TLS	can	(and	will)	fragment	when	sending.	
•  Compare	to	SSH	that	has	to	deal	with	fragments	only	when	
receiving.	

•  Both	protocols	provide	a	streaming	interface	to	applications,	
not	a	message-oriented	one.	

50	

Set-Cookie:  
SID=[AuthToken];  
secure	

Ch	
Set-
Cookie: 
SID = … 

Set-Cookie:  
SID=[AuthToken]  

2	TLS	records	



Cookie	cutters	

•  It’s	up	to	the	calling	application	to	deal	with	message	boundaries	if	it	
wants	to	use	SSL/TLS	for	atomic	message	delivery.	

•  Cookie	cutter	attack	relies	on	a	buggy	browser	that	does	not	check	
for	correct	HTTP	message	termination.	

•  This	happens	in	practice	–it	seems	that	developers	do	not	understand	
the	interface	provided	by	SSL/TLS?	

51	

Set-Cookie:  
SID=[AuthToken];  
secure	

Ch	
Set-
Cookie: 
SID = … 

Set-Cookie:  
SID=[AuthToken]  



Building	Better	Models	



Motivation:	AEAD	in	OpenSSH	today	

53	

OpenSSH preferred algorithms 

•  Lots	of	diversity,	surprising	amount	of	“generic	EtM”	(gEtM).	

•  CTR	dominates,	followed	by	CBC.	

•  ChaCha20-Poly1305	on	the	rise?	(became	default	in	OpenSSH	6.9).		

•  Small	amount	of	GCM.	

	



Analysis	of	SSH-CTR	

•  [PW10]	developed	a	bespoke	security	model	for	CTR	mode	
in	SSH	and	proved	it	secure	(assuming	block	cipher	is	a	
PRP).	

•  The	model	allows	the	attacker	to	deliver	ciphertexts	to	
decryption	oracle	in	a	byte-by-byte	fashion.	

•  Accurately	models	OpenSSH’s	CTR	mode	implementation.	

•  Sanity	checking	of	length	field,	with	related	error	messages,	MAC	
failures,	etc.	

•  Complex	pseudo-code	descriptions	of	algorithms	and	oracles.	

54	



Symmetric	Encryption	Supporting	Fragmented	
Decryption	

•  [BDPS12]	developed	a	general	framework	for	
studying	“Symmetric	Encryption	schemes	supporting	
fragmented	decryption”	like	SSH.	

•  Their	IND-CFA	model	allows	the	attacker	to	deliver	
ciphertext	to	a	decryption	oracle	in	a	symbol-by-
symbol	fashion	and	observe	any	errors/message	
outputs.	

•  [BDPS12]	also	identified	additional	security	properties	
that	SSH	attempts	to	provide:	
•  Boundary	Hiding	(BH)	and	Denial-of-Service	resistance.	

55	



Developing	and	Using	the	Models		

•  [FGMP15]	developed	a	framework	for	studying	Streaming	
Secure	Channels	like	TLS,	which	permit	fragmentation	
both	in	sending	and	receiving.	
•  cf.	work	on	TLS	mentioned	by	Cedric	Fournet	this	morning.	

•  Cryptographic-game-based	rather	than	type-based.	

•  [ADHP16]	uses	the	framework	of	[BDPS12]	to	study	gEtM,	
AES-GCM,	and	ChaCha20-Poly1305	in	OpenSSH.	
•  Identifies	a	bug	in	the	[BDPS12]	security	model.	

•  Proves	security	of	all	modes.	

•  Finds	an	error	in	gEtM:	MAC	computed	before	decryption	but	not	
checked	until	after	decryption!	

56	



ChaCha20-Poly1305	in	OpenSSH	

57	

Payload 

MAC tag 

SQN 
4 

Packet 
Length 4 

Pad 
Len 1 

Padding 
 ≥4 

C1 C2 

K1	
IV = SQN||064	 ChaCha20 ChaCha20 

K2	
IV = SQN||0631	

ChaCha20 
K2	

IV = SQN||0630	

0256 

Kpoly	
Poly1305 



Closing	remarks	



Closing	remarks	

•  Simple	security	models	for	symmetric	encryption	
versus	complex	security	properties	desired	of	secure	
channels.	

•  There	is	still	a	rich	research	seam	to	mine	here.	

	

“Now	this	is	not	the	end.	It	is	not	even	the	beginning	of	
the	end.	But	it	is,	perhaps,	the	end	of	the	beginning.”	

	

59	



Closing	remarks	

60	


