Mathematical Imaging Methods for Mitosis Analysis in Cancer Research

Big Data, Multimodality & Dynamic Models in Biomedical Imaging
Isaac Newton Institute, Cambridge
9th March 2016

Joana Grah¹, Alexander Schreiner², Martin Burger³, Carola-Bibiane Schönlieb¹, Stefanie Reichelt²

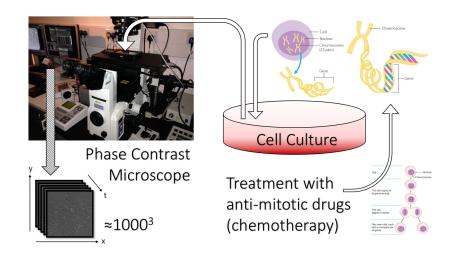
¹Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK

²Cancer Research UK Cambridge Institute

³Institute for Computational and Applied Mathematics, University of Münster, Germany

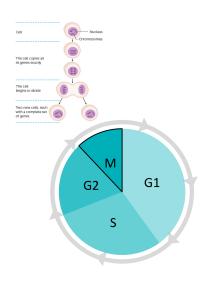
A Typical Data Set

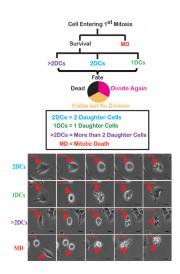
Experimental Set-Up



Aim

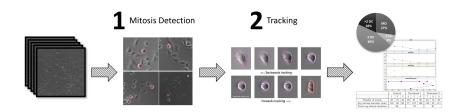
Determination of mitosis duration and cell fate distribution



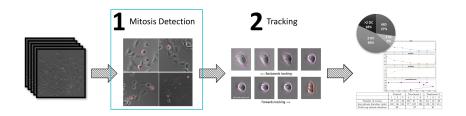


Jennifer Harrington, CRUK CI

Summary of Mitosis Analysis Framework

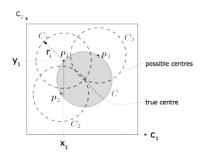


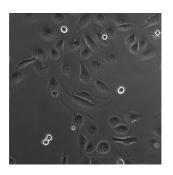
Summary of Mitosis Analysis Framework



The Circular Hough Transform is defined as a path integral along a circle:

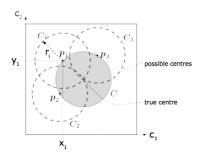
$$CHT(f(c,r)) = \int_{\partial B_r(c)} f(y) d\sigma(y).$$

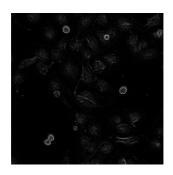




The Circular Hough Transform is defined as a path integral along a circle:

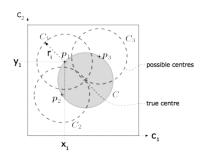
$$CHT(f(c,r)) = \int_{\partial B_r(c)} f(y) d\sigma(y).$$





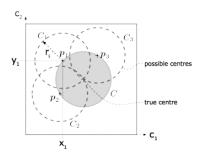
The Circular Hough Transform is defined as a path integral along a circle:

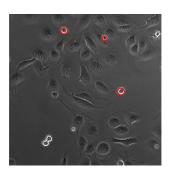
$$CHT(f(c,r)) = \int_{\partial B_r(c)} f(y) d\sigma(y).$$



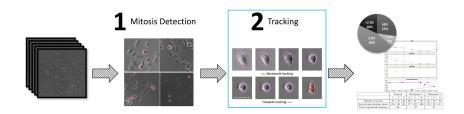
The Circular Hough Transform is defined as a path integral along a circle:

$$CHT(f(c,r)) = \int_{\partial B_r(c)} f(y) d\sigma(y).$$





Summary of Mitosis Analysis Framework



Tracking

← Backwards tracking

Forwards tracking \Longrightarrow

$$E(\phi, c_1, c_2) = \underbrace{\lambda_1 \int_{\Omega} (c_1 - |v|)^2 (1 - H(\phi(x))) \ dx + \lambda_2 \int_{\Omega} (c_2 - |v|)^2 H(\phi(x)) \ dx}_{\text{partition into two regions with different normal velocities}} \\ + \underbrace{\mu \int_{\Omega} |\nabla H(\phi(x))| \ dx}_{\text{small contour length}} + \underbrace{\nu \int_{\Omega} g(f(x)) |\nabla H(\phi(x))| \ dx}_{\text{stop contour at edges based on local std}} \\ + \underbrace{u \frac{1}{2} \max \left\{ \int_{\Omega} (1 - H(\phi(x))) \ dx - t_{\text{area}}, 0 \right\}^2}_{\phi, c_1, c_2} + \underbrace{\min_{\phi, c_1, c_2}}_{\text{keep area above threshold}}$$

$$E(\phi, c_1, c_2)$$

$$= \underbrace{\lambda_1 \int_{\Omega} (c_1 - |v|)^2 (1 - H(\phi(x))) \ dx + \lambda_2 \int_{\Omega} (c_2 - |v|)^2 H(\phi(x)) \ dx}_{\text{partition into two regions with different normal velocities}}$$

$$+ \underbrace{\mu \int_{\Omega} |\nabla H(\phi(x))| \ dx}_{\text{small contour length}} \underbrace{\nu \int_{\Omega} g(f(x)) |\nabla H(\phi(x))| \ dx}_{\text{stop contour at edges based on local std}}$$

$$+ \underbrace{\mu \int_{\Omega} |\nabla H(\phi(x))| \ dx}_{\text{small contour length}} \underbrace{\nu \int_{\Omega} g(f(x)) |\nabla H(\phi(x))| \ dx}_{\text{stop contour at edges based on local std}}$$

$$+ \underbrace{\mu \int_{\Omega} |\nabla H(\phi(x))| \ dx}_{\text{small contour length}} \underbrace{\nu \int_{\Omega} g(f(x)) |\nabla H(\phi(x))| \ dx}_{\text{stop contour at edges based on local std}}$$

$$+ \underbrace{\mu \int_{\Omega} |\nabla H(\phi(x))| \ dx}_{\text{small contour length}} \underbrace{\nu \int_{\Omega} g(f(x)) \ |\nabla H(\phi(x))| \ dx}_{\text{stop contour at edges based on local std}}$$

$$+ \underbrace{\mu \int_{\Omega} |\nabla H(\phi(x))| \ dx}_{\text{small contour length}} \underbrace{\nu \int_{\Omega} g(f(x)) \ |\nabla H(\phi(x))| \ dx}_{\text{stop contour at edges based on local std}}$$

$$+ \underbrace{\mu \int_{\Omega} |\nabla H(\phi(x))| \ dx}_{\text{small contour length}} \underbrace{\nu \int_{\Omega} g(f(x)) \ |\nabla H(\phi(x))| \ dx}_{\text{stop contour at edges based on local std}}_{\text{stop contour at edges}} \underbrace{\nu \int_{\Omega} g(f(x)) \ |\nabla H(\phi(x))| \ dx}_{\text{stop contour at edges}}$$

$$E(\phi, c_1, c_2) = \underbrace{\lambda_1 \int_{\Omega} (c_1 - |v|)^2 (1 - H(\phi(x))) \ dx + \lambda_2 \int_{\Omega} (c_2 - |v|)^2 H(\phi(x)) \ dx}_{\text{partition into two regions with different normal velocities}} \\ + \underbrace{\mu \int_{\Omega} |\nabla H(\phi(x))| \ dx}_{\text{small contour length}} + \underbrace{\nu \int_{\Omega} g(f(x)) |\nabla H(\phi(x))| \ dx}_{\text{stop contour at edges based on local std}} \\ + \underbrace{u \frac{1}{2} \max \left\{ \int_{\Omega} (1 - H(\phi(x))) \ dx - t_{\text{area}}, 0 \right\}^2}_{\phi, c_1, c_2} + \underbrace{\min_{\phi, c_1, c_2}}_{\text{keep area above threshold}}$$

$$E(\phi, c_1, c_2)$$

$$= \underbrace{\lambda_1 \int_{\Omega} (c_1 - |v|)^2 (1 - H(\phi(x))) \, dx + \lambda_2 \int_{\Omega} (c_2 - |v|)^2 \, H(\phi(x)) \, dx}_{\text{partition into two regions with different normal velocities}}$$

$$+ \underbrace{\mu \int_{\Omega} |\nabla H(\phi(x))| \, dx}_{\text{small contour length}} \underbrace{\nu \int_{\Omega} g(f(x)) |\nabla H(\phi(x))| \, dx}_{\text{stop contour at edges based on local std}}$$

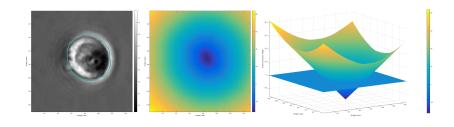
$$+ \underbrace{\mu \int_{\Omega} |\nabla H(\phi(x))| \, dx}_{\text{small contour length}} \underbrace{\int_{\Omega} (1 - H(\phi(x))) \, dx - t_{\text{area}}, 0}_{\phi, c_1, c_2} \underbrace{\sum_{\phi, c_1, c_2} d_{\phi, c_1, c_2}}_{\text{keep area above threshold}}$$

$$E(\phi, c_1, c_2)$$

$$= \underbrace{\lambda_1 \int_{\Omega} (c_1 - |v|)^2 (1 - H(\phi(x))) \, dx + \lambda_2 \int_{\Omega} (c_2 - |v|)^2 \, H(\phi(x)) \, dx}_{\text{partition into two regions with different normal velocities}}$$

$$+ \underbrace{\mu \int_{\Omega} |\nabla H(\phi(x))| \, dx}_{\text{small contour length}} \underbrace{\nu \int_{\Omega} g(f(x)) |\nabla H(\phi(x))| \, dx}_{\text{stop contour at edges based on local std}}$$

$$+ \underbrace{\mu \int_{\Omega} |\nabla H(\phi(x))| \, dx}_{\text{small contour length}} \underbrace{\int_{\Omega} (1 - H(\phi(x))) \, dx - t_{\text{area}}, 0}_{\phi, c_1, c_2} \underbrace{\int_{\phi, c_1, c_2} dt_{\phi, c_1, c_2}}_{\text{keep area above threshold}}$$



$$\phi(x) \begin{cases} <0, & \text{if } x \text{ is inside of the contour,} \\ =0, & \text{if } x \text{ lies on the contour,} \\ >0, & \text{if } x \text{ is outside of the contour.} \end{cases}$$

$$H(\phi) \begin{cases} = 0, & \text{if } \phi \leq 0, \\ = 1, & \text{if } \phi > 0. \end{cases}$$

$$E(\phi, c_1, c_2)$$

$$= \underbrace{\lambda_1 \int_{\Omega} (c_1 - |v|)^2 (1 - H(\phi(x))) \ dx + \lambda_2 \int_{\Omega} (c_2 - |v|)^2 H(\phi(x)) \ dx}_{\text{partition into two regions with different normal velocities}}$$

$$+ \underbrace{\mu \int_{\Omega} |\nabla H(\phi(x))| \ dx}_{\text{small contour length}} \underbrace{\nu \int_{\Omega} g(f(x)) |\nabla H(\phi(x))| \ dx}_{\text{stop contour at edges based on local std}}$$

$$+ \underbrace{\mu \int_{\Omega} |\nabla H(\phi(x))| \ dx}_{\text{small contour length}} \underbrace{\int_{\Omega} (1 - H(\phi(x))) \ dx - t_{\text{area}}, 0}_{\phi, c_1, c_2} \underbrace{\int_{\phi, c_1, c_2} dt}_{\phi, c_1, c_2}$$

$$E(\phi, c_1, c_2)$$

$$= \underbrace{\lambda_1 \int_{\Omega} (c_1 - |v|)^2 (1 - H(\phi(x))) \, dx + \lambda_2 \int_{\Omega} (c_2 - |v|)^2 \, H(\phi(x)) \, dx}_{\text{partition into two regions with different normal velocities}}$$

$$+ \underbrace{\mu \int_{\Omega} |\nabla H(\phi(x))| \, dx}_{\text{small contour length}} \underbrace{\nu \int_{\Omega} g(f(x)) |\nabla H(\phi(x))| \, dx}_{\text{stop contour at edges based on local std}}$$

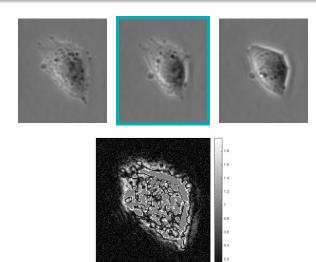
$$+ \underbrace{\mu \int_{\Omega} |\nabla H(\phi(x))| \, dx}_{\text{small contour length}} \underbrace{\int_{\Omega} (1 - H(\phi(x))) \, dx - t_{\text{area}}, 0}_{\phi, c_1, c_2} \underbrace{\int_{\phi, c_1, c_2} dx}_{\phi, c_1, c_2}$$

$$E(\phi, c_1, c_2)$$

$$= \underbrace{\lambda_1 \int_{\Omega} (c_1 - |v|)^2 (1 - H(\phi(x))) \, dx + \lambda_2 \int_{\Omega} (c_2 - |v|)^2 \, H(\phi(x)) \, dx}_{\text{partition into two regions with different normal velocities}}$$

$$+ \underbrace{\mu \int_{\Omega} |\nabla H(\phi(x))| \, dx}_{\text{small contour length}} \underbrace{\nu \int_{\Omega} g(f(x)) |\nabla H(\phi(x))| \, dx}_{\text{stop contour at edges based on local std}}$$

$$+ \underbrace{\mu \int_{\Omega} |\nabla H(\phi(x))| \, dx}_{\text{small contour length}} \underbrace{\int_{\Omega} (1 - H(\phi(x))) \, dx - t_{\text{area}}, 0}_{\phi, c_1, c_2} \underbrace{\sum_{\phi, c_1, c_2} d_{\phi, c_1, c_2}}_{\text{keep area above threshold}}$$



$$|v| pprox rac{\left|rac{\partial}{\partial t}f(x,t)
ight|}{\left|\nabla f(x,t)
ight|_{arepsilon}}$$
 absolute value of the **normal velocity**

$$E(\phi, c_1, c_2)$$

$$= \underbrace{\lambda_1 \int_{\Omega} (c_1 - |v|)^2 (1 - H(\phi(x))) \ dx + \lambda_2 \int_{\Omega} (c_2 - |v|)^2 H(\phi(x)) \ dx}_{\text{partition into two regions with different normal velocities}}$$

$$+ \underbrace{\mu \int_{\Omega} |\nabla H(\phi(x))| \ dx}_{\text{small contour length}} \underbrace{\nu \int_{\Omega} g(f(x)) |\nabla H(\phi(x))| \ dx}_{\text{stop contour at edges based on local std}}$$

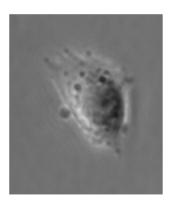
$$+ \underbrace{\mu \int_{\Omega} |\nabla H(\phi(x))| \ dx}_{\text{small contour length}} \underbrace{\int_{\Omega} (1 - H(\phi(x))) \ dx - t_{\text{area}}, 0}_{\phi, c_1, c_2} \underbrace{\int_{\phi, c_1, c_2} dt}_{\phi, c_1, c_2}$$

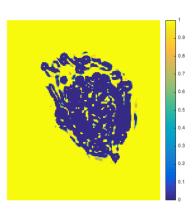
$$E(\phi, c_1, c_2)$$

$$= \underbrace{\lambda_1 \int_{\Omega} (c_1 - |v|)^2 (1 - H(\phi(x))) \ dx + \lambda_2 \int_{\Omega} (c_2 - |v|)^2 H(\phi(x)) \ dx}_{\text{partition into two regions with different normal velocities}}$$

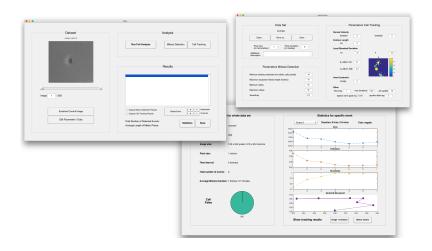
$$+ \underbrace{\mu \int_{\Omega} |\nabla H(\phi(x))| \ dx}_{\text{small contour length}} \underbrace{\nu \int_{\Omega} g(f(x)) |\nabla H(\phi(x))| \ dx}_{\text{stop contour at edges based on local std}}$$

$$+ \underbrace{\mu \int_{\Omega} |\nabla H(\phi(x))| \ dx}_{\text{small contour length}} \underbrace{\int_{\Omega} (1 - H(\phi(x))) \ dx - t_{\text{area}}, 0}_{\phi, c_1, c_2} \underbrace{\int_{\phi, c_1, c_2} dt \ dt}_{\phi, c_1, c_2}$$



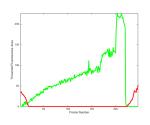


MitosisAnalyser: MATLAB® Graphical User Interface



Example: Multi-Modal Experiment

Phase contrast data + two fluorescent channels (Fluorescent Ubiquitination-based Cell Cycle Indicator)



	Control			Treatment 1			Treatment 2		
	1	2	3	4	5	6	7	8	9
Number of events	27	21	43	29	21	32	34	15	35
Avg mitosis duration (min)	101	86	80	77	107	106	110	53	111
Total avg mitosis duration	89			97			91		

Collaboration with Siang Boon Koh, CRUK CI

Future Work

- Incorporating modelling of cell motion (membrane evolution), ideally from round to flat state in backwards tracking, in a realistic and physically meaningful way
- Bilevel learning of the motion model and the segmentation parameters

Future Work

- Incorporating modelling of cell motion (membrane evolution), ideally from round to flat state in backwards tracking, in a realistic and physically meaningful way
- Bilevel learning of the motion model and the segmentation parameters
- Multi-modal on-line processing during image acquisition by combining mitosis detection performed on phase contrast data with higher resolution analysis on fluorescence microscopy images

Future Work

- Incorporating modelling of cell motion (membrane evolution), ideally from round to flat state in backwards tracking, in a realistic and physically meaningful way
- Bilevel learning of the motion model and the segmentation parameters
- Multi-modal on-line processing during image acquisition by combining mitosis detection performed on phase contrast data with higher resolution analysis on fluorescence microscopy images
- Sparsity-enforcing regularisation incorporating shape information

Thank you very much for your attention! Are there any questions?

Contact: jg704@cam.ac.uk

http://www.damtp.cam.ac.uk/research/cia/http://www.lightmicroscopy.cruk.cam.ac.ukhttp://www.images.group.cam.ac.uk

Bibliography

- Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic active contours. *International journal of computer vision, 22*(1), 61-79.
- Chan, T. F., & Vese, L. A. (2001). Active contours without edges. *Image processing, IEEE transactions on, 10*(2), 266-277.
- Duda, R. O., & Hart, P. E. (1972). Use of the Hough transformation to detect lines and curves in pictures. *Communications of the ACM, 15*(1), 11-15.
- Hough, P. V. (1962). *Method and means for recognizing complex patterns* (No. US 3069654).
- Möller, M., Burger, M., Dieterich, P., & Schwab, A. (2014). A framework for automated cell tracking in phase contrast microscopic videos based on normal velocities. *Journal of Visual Communication and Image Representation*, 25(2), 396-409.