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FIGURE: Individuals interconnected by four networks with very different
properties, but with the same average number of contacts per node 〈k〉 ' 6.
The degree distribution p(k) of these networks changes from almost all
nodes having the same number of contacts p(k) = δ(k − 〈k〉) to Poisson with
p(k) = 〈k〉k e−〈k〉/k !, and finally to scale-free distribution with p(k) = Ck−γ .

I Networks provide a flexible modelling framework to capture
heterogeneities in social or technological interactions,

I Modelling can be more challenging compared to ODE and PDE
models.
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Ṡ = −βIS/N + γI,

İ = βIS/N − γI.

˙[S] = −τ [SI],
˙[I] = τ [SI]− γ[I],
˙[SI] = τ([SSI]− [ISI]− [SI])− γ[SI],

· · ·

Exact epidemic models on

structured populations

(graphs/networks) with discrete

state space and continuous

time: Ẋ(t) = PX(t), where X is

the mapping of the state space

(S) onto the probabilities of

being in a particular state at time

t and P is the transition matrix

between states.

˙Ssi = −βiSsi + γIsi

+ γ[(i + 1)Ss−1,i+1 − iSsi ],

+ β

∑M
k=1

∑
j+l=k jlSjl∑M

k=1
∑

j+l=k jSjl
[(s + 1)Ss+1,i−1 − sSsi ],

˙Isi = βiSsi − γIsi

+ γ[(i + 1)Is−1,i+1 − iIsi ]]

+ β

∑M
k=1

∑
j+l=k l2Sjl∑M

k=1
∑

j+l=k jIjl
[(s + 1)Is+1,i−1 − sIsi ].
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I SIS dynamics: rate of infection τ across an (SI) link and recovery
at rate γ. All processes are Markovian and independent!

I Network with N nodes and adjacency matrix
T = (Tij)i,j=1,2,...,N ∈ (a,b)N2

, with a,b ∈ R and
Tii = 0 ∀i = 1,2, . . . ,N, weighted, directed network.

I Write down all possible states the network can be in,
S = {(SS . . .S), (SS . . . I), (SS . . . IS), . . . (II . . . I)}, with |S| = 2N .

I S = {S1,S2, . . . ,S2N} and let XSi denote the probability of the
system being in state Si at time t and X = (XS1 ,XS2 , . . . ,XS2N ),

I The forward Kolmogorov equation of the stochastic process is

Ẋ (t) = PX ,

where P is a 2N × 2N transition matrix giving the rates of all
possible transitions.
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1 2 3

I The system can be in S = {SSS,SSI,SIS, ISS,SII, ISI, IIS, III}
and the transitions amongst these states need to be described,

I Continuous Time Markov Chain with the following forward
Kolmogorov equations:



ẊSSS
ẊSSI
ẊSIS
ẊISS
ẊSII
ẊISI
ẊIIS
ẊIII


=



0 γ γ γ 0 0 0 0
0 −2τ − γ 0 0 γ γ 0 0
0 0 −2τ − γ 0 γ 0 γ 0
0 0 0 −2τ − γ 0 γ γ 0
0 τ τ 0 −2τ − 2γ 0 0 γ

0 τ 0 τ 0 −2τ − 2γ 0 γ

0 0 τ τ 0 0 −2τ − 2γ γ

0 0 0 0 2τ 2τ 2τ −3γ





XSSS
XSSI
XSIS
XISS
XSII
XISI
XIIS
XIII



For full system characterisation 23 = 8 equations are needed.
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I Exponentially large number of equations makes the analysis
difficult.

I For fully connected networks the 2N equations reduce to N

ṗk = ak−1pk−1 − (ak + ck )pk + ck+1pk+1, k = 0, . . . ,N, (1)

where ak = τk(N − k) and ck = γk .
I Can we use only N rather than 2N equations for arbitrary

networks?
I If so, what is ak for an arbitrary network?
I ak - is in fact a random variable, whose distribution depends on

the structure of the network and dynamics.
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ṗk = ak−1pk−1 − (ak + ck )pk + ck+1pk+1, k = 0, . . . ,N, (1)

where ak = τk(N − k) and ck = γk .
I Can we use only N rather than 2N equations for arbitrary

networks?

I If so, what is ak for an arbitrary network?
I ak - is in fact a random variable, whose distribution depends on

the structure of the network and dynamics.

ISTVAN Z. KISS 8 / 22 PDE LIMIT OF SPREADING PROCESSES ON NETWORKS



INTRODUCTION AND MOTIVATIOAN
LINK TO PDES

SUMMARY AND FUTURE CHALLENGES

WHY NETWORKS?
MODELLING APPROACHES
FORMULATION OF STOCHASTIC SPREADING PROCESSES ON NETWORKS

I Exponentially large number of equations makes the analysis
difficult.

I For fully connected networks the 2N equations reduce to N
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FIGURE: Time evolution of the expected prevalence from simulation (◦ markers) and from master

equations (1) with ak taken as an average from simulation (continuous curve) for (A) homogeneous

random graph, (B) Erdős-Rényi random graph, (C) bimodal random graph, (D) negative binomial

random graph, (E) Barabási-Albert graph, (F) clustered random graph with clustering coefficient

0.4. The parameters are N = 1000, τ = 2, γ = 1, average degree 6, number of initially infected

nodes 10. The simulation results were obtained as the average of 250 simulations.
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I Can we propose an method to
encode the network and
dynamics into ak ,

I If we can do this (?), PDEs
can potentially be helpful.

	
  

	
  

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

3500

 

 
homogeneous random graph
Erdõs−Rényi graph
bimodal random graph
Barabási−Albert graph
theoretical value

ak
τ

k

I Work by Nagy et al.1 showed that approximate master equations
can be written down, similar to Eq. (1), but different ak
coefficients:

ak = τkn
N − k
N − 1

,

ak = τckp(N − k)q ,

ak = numerically inferred.

1N Nagy, IZ Kiss, and PL Simon. “Approximate Master Equations for Dynamical Processes on Graphs”. In: Mathematical Modelling of
Natural Phenomena 9.02 (2014), pp. 43–57.
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I PDEs are great at storing/encoding information in a compact way.

I The Fokker-Planck equation can be considered as a continuous
version of master equation (1) with a discretisation of a
continuous function u(t , z) in the interval [0,1],

u
(

t ,
k
N

)
= pk (t). (2)

I The PDE is traditionally given in the form

∂tu(t , z) =
1
2
∂zz(g(z)u(t , z))− ∂z(h(z)u(t , z)). (3)

I The functions g and h will be determined in such a way that the
finite difference discretization of this PDE will yield the master
equation (1). (In fact, any parabolic type PDE with space
dependent coefficients could serve as the continuous version of
the master equation.)
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I Discretise to relate the PDE and the master equation

f (z−h)−2f (z)+f (z+h) ≈ h2f ′′(z), f (z+h)−f (z−h) ≈ 2hf ′(z).

I Using z = k/n and h = 1/N to the partial derivatives of the
functions g(z)u(t , z) and h(z)u(t , z) with respect to z leads to

∂t u
(

t,
k
N

)
=

N2

2
(gk+1xk+1 − 2gk xk + gk−1xk−1)−

N
2
(hk+1xk+1 − hk−1xk−1), (4)

where the notations u
(
t , k

N

)
= xk , gk = g

( k
N

)
, hk = h

( k
N

)
are

used.
I Applying this at k = 0 and k = N requires two artificial mesh

points at z = −1/N and at z = 1/N. Differentiating (2) with
respect to t and using the master equation (1) yields

∂t u
(

t,
k
N

)
= ṗk = ak−1pk−1 − (ak + ck )pk + ck+1pk+1. (5)
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I Upon substituting pk by xk for all k we arrive at the right hand
side of (4). Making the coefficients equal leads to

ak =
N
2

hk +
N2

2
gk , ck =

N2

2
gk −

N
2

hk . (6)

I Thus g and h are defined so that the two discretisations are
equivalent

g
(

k
N

)
= gk =

1
N2 (ak + ck ), h

(
k
N

)
= hk =

1
N
(ak − ck )

hold.
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I Assume that ak and ck are given by the functions A and C
( ak

N = A
( k

N

)
and ck

N = C
( k

N

)
).

I In this case, we obtain that g and h can be given as

g(z) =
1
N
(A(z) + C(z)), h(z) = A(z)− C(z).

I Summarizing, the Fokker-Plank equation of the
one-step-process given by density dependent coefficients is

∂tu(t , z) =
1

2N
∂zz((A(z)+C(z))u(t , z))−∂z((A(z)−C(z))u(t , z))

(7)
subject to boundary conditions

δ∂z((A + C)u)(−δ, t)− ((A− C)u)(−δ, t) = 0, (8)

δ∂z((A + C)u)(1 + δ, t)− ((A− C)u)(1 + δ, t) = 0, (9)

where δ = 1/2N.
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I Linear coefficients, A(z) = a(1− z) and C(z) = cz, lead to

∂tu(t , z) =
1

2N
∂zz(((c−a)z+a)u(t , z))−∂z((a−(a+c)z)u(t , z)).

I Denoting the steady state solution by U(z) it immediately follows
that it satisfies the ODE below

1
2N

U ′′(z) = ((1− 2z)U(z))′.

I Integrating and using the boundary condition and that the
integral of U becomes 1/N leads to

U(z) =
√

2√
πN

exp
(
−2N(z − 1

2
)2
)
. (10)
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FIGURE: The steady state of the distribution in the linear case, when
A(z) = a(1− z) and C(z) = cz for N = 50. The binomial distribution as the
exact solution of the master equation (circles) is shown together with U, the
solution of the Fokker-Planck equation (continuous curve). In the left panel
the case a = c = 1 is shown, when U is given by (10). In the right panel the
case a = 2, c = 1 is shown, when U is given by the general case of a 6= c.
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I Approximate steady state by neglecting the 1/N term in the
Foker-Planck equation.

I Keep the full PDE and use the Fourier method to find the steady
state, for special choices of the coefficients.

I Approximate steady state with normal distributions.

I Use numerical methods.
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I Starting from the master equation, use the Probability
Generating Formalism G(t , z) =

∑N
k=0 zk pk (t) to store

information more effectively, and to develop systematically a
series of PDEs for the moments of the distribution.

I Use the same approach but starting from high-dimensional
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INTRODUCTION AND MOTIVATIOAN
LINK TO PDES

SUMMARY AND FUTURE CHALLENGES

I The network is not encoded properly in the PDE: ak depends not
only on the network but also on the parameters of the dynamic,
and ak is a random variable.

I Systematic approach to explore the reach and usefulness of a
PDE approach to the study of spreading processes on networks.

I Development of theory for estimating the error between the true
stochastic and PDE model - employ existing results from other
relevant areas.

I A more integrated approach to go from exact/true stochastic
processes to mean-filed and PDE models, or exact/true
stochastic to the PDE directly.

I Any suggestions/ideas/links to existing results are welcome!
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Thank you for your attention!
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