PDE LIMIT OF SPREADING PROCESSES ON NETWORKS

Istvan Z. Kiss

School of Mathematical and Physical Sciences, Department of Mathematics,
University of Sussex, UK

with Péter L Simon, Institute of Mathematics, Eötvös Loránd University Budapest, and
Numerical Analysis and Large Networks Research Group, Hungarian Academy of Sciences,
Hungary

Data-Rich Phenomena - Modelling, Analysing & Simulation Using Partial Differential
Equations, 14-16 December 2015, Cambridge.
1. **Introduction and Motivation**

2. **Link to PDEs**

3. **Summary and Future Challenges**
1. **Introduction and Motivation**
 - Why networks?
 - Modelling approaches
 - Formulation of stochastic spreading processes on networks

2. **Link to PDEs**

3. **Summary and Future Challenges**
Figure: Individuals interconnected by four networks with very different properties, but with the same average number of contacts per node $\langle k \rangle \simeq 6$. The degree distribution $p(k)$ of these networks changes from almost all nodes having the same number of contacts $p(k) = \delta(k - \langle k \rangle)$ to Poisson with $p(k) = \langle k \rangle^k e^{-\langle k \rangle} / k!$, and finally to scale-free distribution with $p(k) = Ck^{-\gamma}$.

- Networks provide a flexible modelling framework to capture heterogeneities in social or technological interactions,
- Modelling can be more challenging compared to ODE and PDE models.
\[
\begin{align*}
\dot{S} &= -\beta IS / N + \gamma I, \\
\dot{I} &= \beta IS / N - \gamma I.
\end{align*}
\]
\[\dot{S} = -\beta IS/N + \gamma I, \]
\[\dot{I} = \beta IS/N - \gamma I. \]

\[\dot{S} = -\tau[S], \]
\[\dot{I} = \tau[S] - \gamma[I], \]
\[\dot{SI} = \tau([SSI] - [ISI] - [SI]) - \gamma[SI], \]
\[\dot{\cdot} \cdot \cdot \]
\[\dot{S} = -\beta IS/N + \gamma I, \]
\[\dot{I} = \beta IS/N - \gamma I. \]

\[[\dot{S}] = -\tau [SI], \]
\[[\dot{I}] = \tau [SI] - \gamma [I], \]
\[[\dot{SI}] = \tau ([SSI] - [ISI] - [SI]) - \gamma [SI], \]
\[\ldots \]
\[\dot{S} = -\beta IS/N + \gamma I, \]
\[\dot{I} = \beta IS/N - \gamma I. \]

\[[\dot{S}] = -\tau[S], \]
\[[\dot{I}] = \tau[S] - \gamma[I], \]
\[[\dot{S}I] = \tau([SSI] - [ISI] - [SI]) - \gamma[S], \]
\[\ldots \]

\[\dot{S}_{si} = -\beta iS_{si} + \gamma I_{si} \]
\[+ \gamma[(i + 1)S_{s-1,i+1} - iS_{si}], \]
\[+ \beta \sum_{k=1}^{M} \frac{\sum_{j=l=k}^{j+l} iS_{jl}}{\sum_{k=1}^{M} \sum_{j+l=k}^{j+l} jS_{jl}} [(s + 1)S_{s+1,i-1} - sS_{si}], \]
\[l_{si} = \beta iS_{si} - \gamma I_{si} \]
\[+ \gamma[(i + 1)I_{s-1,i+1} - iI_{si}], \]
\[+ \beta \sum_{k=1}^{M} \frac{\sum_{j=l=k}^{j+l} i^2 S_{jl}}{\sum_{k=1}^{M} \sum_{j+l=k}^{j+l} jI_{jl}} [(s + 1)I_{s+1,i-1} - sI_{si}]. \]
\[\dot{S} = -\beta IS/N + \gamma I, \]
\[\dot{I} = \beta IS/N - \gamma I. \]

Exact epidemic models on structured populations (graphs/networks) with discrete state space and continuous time: \(\dot{X}(t) = PX(t) \), where \(X \) is the mapping of the state space \((S) \) onto the probabilities of being in a particular state at time \(t \) and \(P \) is the transition matrix between states.

\[
\begin{align*}
[\dot{S}] &= -\tau [S], \\
[\dot{I}] &= \tau [S] - \gamma [I], \\
[\dot{SI}] &= \tau ([SSI] - [SI] - [SI]) - \gamma [SI],
\end{align*}
\]
\[
\begin{align*}
\dot{S}_{si} &= -\beta iS_{si} + \gamma I_{si} \\
&\quad + \gamma [(i+1)S_{s-1,i+1} - iS_{si}], \\
&\quad + \beta \frac{\sum_{k=1}^{M} \sum_{j+l=k} jS_{jl}}{\sum_{k=1}^{M} \sum_{j+l=k} lS_{jl}} [(s+1)S_{s+1,i-1} - sS_{si}], \\
\dot{I}_{si} &= \beta iS_{si} - \gamma I_{si} \\
&\quad + \gamma [(i+1)I_{s-1,i+1} - iI_{si}] \\
&\quad + \beta \frac{\sum_{k=1}^{M} \sum_{j+l=k} j^2 I_{jl}}{\sum_{k=1}^{M} \sum_{j+l=k} l^2 I_{jl}} [(s+1)I_{s+1,i-1} - sI_{si}].
\end{align*}
\]
\[
\begin{align*}
\dot{S} &= -\beta IS/N + \gamma I, \\
\dot{I} &= \beta IS/N - \gamma I.
\end{align*}
\]

Exact epidemic models on structured populations (graphs/networks) with discrete state space and continuous time: \(\dot{X}(t) = PX(t) \), where \(X \) is the mapping of the state space \((S) \) onto the probabilities of being in a particular state at time \(t \) and \(P \) is the transition matrix between states.

\[
\begin{align*}
\dot{S}_{si} &= -\beta iS_{si} + \gamma I_{si} \\
\dot{I}_{si} &= \beta iS_{si} - \gamma I_{si} + \gamma [(i+1)_{s_{i-1}} + iS_{si} - sl_{si}], \\
\dot{S}_{jl} &= -\tau [S_{jl}], \\
\dot{I}_{jl} &= \tau [S_{jl}] - \gamma [I_{jl}], \\
\dot{S}_{l} &= \tau ([S_{l}] - [I_{l}] - [S_{l}]) - \gamma [S_{l}], \\
\end{align*}
\]

\[
\begin{align*}
\sum_{k=1}^{M} \sum_{j+l=k} l^2 S_{jl} &\left[(s+1)_{s_{i-1}} + iS_{si} - sl_{si}\right], \\
\sum_{k=1}^{M} \sum_{j+l=k} j^2 S_{jl} &\left[(s+1)_{s_{i-1}} + iS_{si} - sl_{si}\right].
\end{align*}
\]
SIS dynamics: rate of infection τ across an (SI) link and recovery at rate γ. *All processes are Markovian and independent!*
SIS dynamics: rate of infection τ across an (SI) link and recovery at rate γ. All processes are Markovian and independent!

Network with N nodes and adjacency matrix

$T = (T_{ij})_{i,j=1,2,\ldots,N} \in (a, b)^{N^2}$, with $a, b \in \mathbb{R}$ and $T_{ii} = 0 \ \forall i = 1, 2, \ldots, N$, weighted, directed network.
► SIS dynamics: rate of infection τ across an (SI) link and recovery at rate γ. All processes are Markovian and independent!

► Network with N nodes and adjacency matrix

$$T = (T_{ij})_{i,j=1,2,\ldots,N} \in (a, b)^{N^2}, \text{ with } a, b \in \mathbb{R} \text{ and } T_{ii} = 0 \ \forall i = 1, 2, \ldots, N, \text{ weighted, directed network.}$$

► Write down all possible states the network can be in,

$$S = \{(SS \ldots S), (SS \ldots I), (SS \ldots IS), \ldots (II \ldots I)\}, \text{ with } |S| = 2^N.$$
SIS dynamics: rate of infection τ across an (SI) link and recovery at rate γ. All processes are Markovian and independent!

Network with N nodes and adjacency matrix

$T = (T_{ij})_{i,j=1,2,\ldots,N} \in (a, b)^{N^2}$, with $a, b \in \mathbb{R}$ and $T_{ii} = 0 \forall i = 1, 2, \ldots, N$, weighted, directed network.

Write down all possible states the network can be in,

$S = \{(SS \ldots S), (SS \ldots I), (SS \ldots IS), \ldots (II \ldots I)\}$, with $|S| = 2^N$.

$S = \{S_1, S_2, \ldots, S_{2^N}\}$ and let X_{S_i} denote the probability of the system being in state S_i at time t and $X = (X_{S_1}, X_{S_2}, \ldots, X_{S_{2^N}})$,
- **SIS dynamics**: rate of infection τ across an (SI) link and recovery at rate γ. All processes are Markovian and independent!

- Network with N nodes and adjacency matrix

 \[
 T = (T_{ij})_{i,j=1,2,\ldots,N} \in (a, b)^{N^2}, \text{ with } a, b \in \mathbb{R} \text{ and } T_{ii} = 0 \forall i = 1, 2, \ldots, N, \text{ weighted, directed network.}
 \]

- Write down all possible states the network can be in,

 \[
 S = \{(SS \ldots S), (SS \ldots I), (SS \ldots IS), \ldots (II \ldots I)\}, \text{ with } |S| = 2^N.
 \]

- $S = \{S_1, S_2, \ldots, S_{2^N}\}$ and let X_{S_i} denote the probability of the system being in state S_i at time t and $X = (X_{S_1}, X_{S_2}, \ldots, X_{S_{2^N}})$,

- The forward **Kolmogorov** equation of the stochastic process is

 \[
 \dot{X}(t) = PX,
 \]

 where P is a $2^N \times 2^N$ transition matrix giving the rates of all possible transitions.
The system can be in $S = \{SSS, SSI, SIS, ISS, SII, ISI, IIS, III\}$ and the transitions amongst these states need to be described.

Continuous Time Markov Chain with the following forward Kolmogorov equations:

\[
\begin{pmatrix}
\dot{X}_{SSS} \\
\dot{X}_{SSI} \\
\dot{X}_{SIS} \\
\dot{X}_{ISS} \\
\dot{X}_{SII} \\
\dot{X}_{ISI} \\
\dot{X}_{IIS} \\
\dot{X}_{III}
\end{pmatrix} =
\begin{pmatrix}
0 & \gamma & \gamma & \gamma & 0 & 0 & 0 & 0 \\
0 & -2\tau - \gamma & 0 & 0 & \gamma & \gamma & 0 & 0 \\
0 & 0 & -2\tau - \gamma & 0 & \gamma & 0 & \gamma & 0 \\
0 & 0 & 0 & -2\tau - \gamma & 0 & \gamma & 0 & 0 \\
0 & \tau & \tau & 0 & -2\tau - 2\gamma & 0 & 0 & \gamma \\
0 & \tau & 0 & \tau & 0 & -2\tau - 2\gamma & 0 & \gamma \\
0 & 0 & \tau & \tau & 0 & 0 & -2\tau - 2\gamma & \gamma \\
0 & 0 & 0 & \tau & 0 & 2\tau & 2\tau & -3\gamma
\end{pmatrix}
\begin{pmatrix}
X_{SSS} \\
X_{SSI} \\
X_{SIS} \\
X_{ISS} \\
X_{SII} \\
X_{ISI} \\
X_{IIS} \\
X_{III}
\end{pmatrix}
\]

For full system characterisation $2^3 = 8$ equations are needed.
Exponentially large number of equations makes the analysis difficult.
► Exponentially large number of equations makes the analysis difficult.

► For fully connected networks the 2^N equations reduce to N

$$\dot{p}_k = a_{k-1} p_{k-1} - (a_k + c_k) p_k + c_{k+1} p_{k+1}, \quad k = 0, \ldots, N, \quad (1)$$

where $a_k = \tau k (N - k)$ and $c_k = \gamma k$.
Exponentially large number of equations makes the analysis difficult.

For fully connected networks the 2^N equations reduce to N

$$\dot{p}_k = a_{k-1}p_{k-1} - (a_k + c_k)p_k + c_{k+1}p_{k+1}, \quad k = 0, \ldots, N,$$

where $a_k = \tau k(N - k)$ and $c_k = \gamma k$.

Can we use only N rather than 2^N equations for arbitrary networks?
Exponentially large number of equations makes the analysis difficult.

For fully connected networks the 2^N equations reduce to N

$$\dot{p}_k = a_{k-1} p_{k-1} - (a_k + c_k) p_k + c_{k+1} p_{k+1}, \quad k = 0, \ldots, N, \quad (1)$$

where $a_k = \tau k (N - k)$ and $c_k = \gamma k$.

Can we use only N rather than 2^N equations for arbitrary networks?

If so, what is a_k for an arbitrary network?
Exponentially large number of equations makes the analysis difficult.

For fully connected networks the 2^N equations reduce to N

$$\dot{p}_k = a_{k-1}p_{k-1} - (a_k + c_k)p_k + c_{k+1}p_{k+1}, \quad k = 0, \ldots, N,$$ \hspace{1cm} (1)

where $a_k = \tau k(N - k)$ and $c_k = \gamma k$.

Can we use only N rather than 2^N equations for arbitrary networks?

If so, what is a_k for an arbitrary network?

a_k - is in fact a random variable, whose distribution depends on the structure of the network and dynamics.
Figure: Time evolution of the expected prevalence from simulation (○ markers) and from master equations (1) with a_k taken as an average from simulation (continuous curve) for (A) homogeneous random graph, (B) Erdős-Rényi random graph, (C) bimodal random graph, (D) negative binomial random graph, (E) Barabási-Albert graph, (F) clustered random graph with clustering coefficient 0.4. The parameters are $N = 1000$, $\tau = 2$, $\gamma = 1$, average degree 6, number of initially infected nodes 10. The simulation results were obtained as the average of 250 simulations.
Can we propose an method to encode the network and dynamics into a_k,

Can we propose an method to encode the network and dynamics into \(a_k \),

If we can do this (?), PDEs can potentially be helpful.
Can we propose an method to encode the network and dynamics into a_k,
If we can do this (?), PDEs can potentially be helpful.
Can we propose an method to encode the network and dynamics into a_k,

If we can do this (?), PDEs can potentially be helpful.

Work by Nagy et al.\(^1\) showed that approximate master equations can be written down, similar to Eq. (1), but different a_k coefficients:

\[
a_k = \tau \frac{kn}{N - 1},
\]

\[
a_k = \tau c k^p (N - k)^q,
\]

\[
a_k = \text{numerically inferred}.
\]

Introduction and Motivation

Link to PDEs
- Fokker-Planck equation: the basic idea
- Fokker-Planck equation: density dependent case
- Fokker-Planck equation: steady state
- Other potential uses of PDE for dynamics on networks

Summary and Future Challenges
PDEs are great at storing/encoding information in a compact way.
PDEs are great at storing/encoding information in a compact way.
The Fokker-Planck equation can be considered as a continuous
version of master equation (1) with a discretisation of a
continuous function $u(t, z)$ in the interval $[0, 1]$,

$$u \left(t, \frac{k}{N} \right) = p_k(t). \quad (2)$$
PDEs are great at storing/encoding information in a compact way.

The Fokker-Planck equation can be considered as a continuous version of master equation (1) with a discretisation of a continuous function $u(t, z)$ in the interval $[0, 1]$,

$$u\left(t, \frac{k}{N}\right) = p_k(t). \quad (2)$$

The PDE is traditionally given in the form

$$\partial_t u(t, z) = \frac{1}{2} \partial_{zz}(g(z)u(t, z)) - \partial_z(h(z)u(t, z)). \quad (3)$$
PDEs are great at storing/encoding information in a compact way.

The Fokker-Planck equation can be considered as a continuous version of master equation (1) with a discretisation of a continuous function \(u(t, z) \) in the interval \([0, 1]\),

\[
u \left(t, \frac{k}{N}\right) = p_k(t).\tag{2}\]

The PDE is traditionally given in the form

\[
\partial_t u(t, z) = \frac{1}{2} \partial_{zz}(g(z)u(t, z)) - \partial_z(h(z)u(t, z)).\tag{3}
\]

The functions \(g\) and \(h\) will be determined in such a way that the finite difference discretization of this PDE will yield the master equation (1). (In fact, any parabolic type PDE with space dependent coefficients could serve as the continuous version of the master equation.)
Discretise to relate the PDE and the master equation

\[f(z - h) - 2f(z) + f(z + h) \approx h^2 f''(z), \quad f(z + h) - f(z - h) \approx 2hf'(z). \]
Discretise to relate the PDE and the master equation

\[f(z - h) - 2f(z) + f(z + h) \approx h^2 f''(z), \quad f(z + h) - f(z - h) \approx 2hf'(z). \]

Using \(z = \frac{k}{n} \) and \(h = \frac{1}{N} \) to the partial derivatives of the functions \(g(z)u(t, z) \) and \(h(z)u(t, z) \) with respect to \(z \) leads to

\[
\partial_t u \left(t, \frac{k}{N} \right) = \frac{N^2}{2} (g_{k+1}x_{k+1} - 2g_kx_k + g_{k-1}x_{k-1}) - \frac{N}{2} (h_{k+1}x_{k+1} - h_{k-1}x_{k-1}),
\]

where the notations \(u \left(t, \frac{k}{N} \right) = x_k, g_k = g \left(\frac{k}{N} \right), h_k = h \left(\frac{k}{N} \right) \) are used.
Discretise to relate the PDE and the master equation

\[f(z - h) - 2f(z) + f(z + h) \approx h^2 f''(z), \quad f(z + h) - f(z - h) \approx 2hf'(z). \]

Using \(z = k/n \) and \(h = 1/N \) to the partial derivatives of the functions \(g(z)u(t, z) \) and \(h(z)u(t, z) \) with respect to \(z \) leads to

\[
\partial_t u \left(t, \frac{k}{N} \right) = \frac{N^2}{2} (g_{k+1}x_{k+1} - 2g_kx_k + g_{k-1}x_{k-1}) - \frac{N}{2} (h_{k+1}x_{k+1} - h_{k-1}x_{k-1}),
\]

where the notations \(u(t, \frac{k}{N}) = x_k, g_k = g \left(\frac{k}{N} \right), h_k = h \left(\frac{k}{N} \right) \) are used.

Applying this at \(k = 0 \) and \(k = N \) requires two artificial mesh points at \(z = -1/N \) and at \(z = 1/N \). Differentiating (2) with respect to \(t \) and using the master equation (1) yields

\[
\partial_t u \left(t, \frac{k}{N} \right) = \dot{p}_k = a_{k-1}p_{k-1} - (a_k + c_k)p_k + c_{k+1}p_{k+1}.
\]
Upon substituting p_k by x_k for all k we arrive at the right hand side of (4). Making the coefficients equal leads to

$$a_k = \frac{N}{2} h_k + \frac{N^2}{2} g_k, \quad c_k = \frac{N^2}{2} g_k - \frac{N}{2} h_k.$$
(6)
Upon substituting p_k by x_k for all k we arrive at the right hand side of (4). Making the coefficients equal leads to

$$
a_k = \frac{N}{2} h_k + \frac{N^2}{2} g_k, \quad c_k = \frac{N^2}{2} g_k - \frac{N}{2} h_k.
$$

Thus g and h are defined so that the two discretisations are equivalent

$$
g \left(\frac{k}{N} \right) = g_k = \frac{1}{N^2} (a_k + c_k), \quad h \left(\frac{k}{N} \right) = h_k = \frac{1}{N} (a_k - c_k)
$$

hold.
Assume that a_k and c_k are given by the functions A and C
\[
\left(\frac{a_k}{N} = A\left(\frac{k}{N} \right) \text{ and } \frac{c_k}{N} = C\left(\frac{k}{N} \right) \right).
\]
Assume that a_k and c_k are given by the functions A and C ($\frac{a_k}{N} = A(\frac{k}{N})$ and $\frac{c_k}{N} = C(\frac{k}{N})$).

In this case, we obtain that g and h can be given as

$$g(z) = \frac{1}{N} (A(z) + C(z)), \quad h(z) = A(z) - C(z).$$
Assume that \(a_k \) and \(c_k \) are given by the functions \(A \) and \(C \)
\[
\left(\frac{a_k}{N} = A \left(\frac{k}{N} \right) \text{ and } \frac{c_k}{N} = C \left(\frac{k}{N} \right) \right).
\]
In this case, we obtain that \(g \) and \(h \) can be given as
\[
g(z) = \frac{1}{N}(A(z) + C(z)), \quad h(z) = A(z) - C(z).
\]
Summarizing, the Fokker-Plank equation of the one-step-process given by density dependent coefficients is
\[
\partial_t u(t, z) = \frac{1}{2N} \partial_{zz}((A(z) + C(z))u(t, z)) - \partial_z((A(z) - C(z))u(t, z))
\]
subject to boundary conditions
\[
\delta \partial_z((A + C)u)(-\delta, t) - ((A - C)u)(-\delta, t) = 0, \quad \delta \partial_z((A + C)u)(1 + \delta, t) - ((A - C)u)(1 + \delta, t) = 0,
\]
where \(\delta = 1/2N \).
Linear coefficients, \(A(z) = a(1 - z) \) and \(C(z) = cz \), lead to

\[
\frac{\partial_t u(t, z)}{2N} = \frac{1}{2N} \partial_{zz}(((c - a)z + a)u(t, z)) - \partial_z((a - (a + c)z)u(t, z)).
\]
Linear coefficients, $A(z) = a(1 - z)$ and $C(z) = cz$, lead to

$$\frac{\partial_t u(t, z)}{} = \frac{1}{2N} \partial_{zz}(((c - a)z + a)u(t, z)) - \partial_z((a - (a + c)z)u(t, z)).$$

Denoting the steady state solution by $U(z)$ it immediately follows that it satisfies the ODE below

$$\frac{1}{2N} U''(z) = ((1 - 2z)U(z))'.$$
Linear coefficients, $A(z) = a(1 - z)$ and $C(z) = cz$, lead to

$$\partial_t u(t, z) = \frac{1}{2N} \partial_{zz}(((c - a)z + a)u(t, z)) - \partial_z((a - (a + c)z)u(t, z)).$$

Denoting the steady state solution by $U(z)$ it immediately follows that it satisfies the ODE below

$$\frac{1}{2N} U''(z) = ((1 - 2z)U(z))'.$$

Integrating and using the boundary condition and that the integral of U becomes $1/N$ leads to

$$U(z) = \frac{\sqrt{2}}{\sqrt{\pi N}} \exp \left(-2N(z - \frac{1}{2})^2\right).$$

(10)
Figure: The steady state of the distribution in the linear case, when $A(z) = a(1 - z)$ and $C(z) = cz$ for $N = 50$. The binomial distribution as the exact solution of the master equation (circles) is shown together with U, the solution of the Fokker-Planck equation (continuous curve). In the left panel the case $a = c = 1$ is shown, when U is given by (10). In the right panel the case $a = 2$, $c = 1$ is shown, when U is given by the general case of $a \neq c$.
Approximate steady state by neglecting the $1/N$ term in the Foker-Planck equation.
Approximate steady state by neglecting the $1/N$ term in the Fokker-Planck equation.

Keep the full PDE and use the Fourier method to find the steady state, for special choices of the coefficients.
► Approximate steady state by neglecting the $1/N$ term in the Foker-Planck equation.

► Keep the full PDE and use the Fourier method to find the steady state, for special choices of the coefficients.

► Approximate steady state with normal distributions.
Approximate steady state by neglecting the $1/N$ term in the Foker-Planck equation.

Keep the full PDE and use the Fourier method to find the steady state, for special choices of the coefficients.

Approximate steady state with normal distributions.

Use numerical methods.
Starting from the master equation, use the Probability Generating Formalism $G(t, z) = \sum_{k=0}^{N} z^k p_k(t)$ to store information more effectively, and to develop systematically a series of PDEs for the moments of the distribution.
Starting from the master equation, use the Probability Generating Formalism $G(t, z) = \sum_{k=0}^{N} z^k p_k(t)$ to store information more effectively, and to develop systematically a series of PDEs for the moments of the distribution.

Use the same approach but starting from high-dimensional mean-field models\(^2\).

Starting from the master equation, use the Probability Generating Formalism \(G(t, z) = \sum_{k=0}^{N} z^k p_k(t) \) to store information more effectively, and to develop systematically a series of PDEs for the moments of the distribution.

Use the same approach but starting from high-dimensional mean-field models\(^2\).

\[
\frac{dA_{k,l}}{dt} = \frac{\bar{p}}{2} [kB_{k,l} - lA_{k,l}]
+ \frac{\bar{p}}{2} [(l+1)A_{k-1,l+1} - lA_{k,l}]
+ \frac{\bar{p}}{2} \sum_{k,l} kB_{k,l} \cdot [(l+1)A_{k-1,l+1} - lA_{k,l}]
+ \frac{\bar{p}}{2} \sum_{k,l} lA_{k,l} \cdot [(k+1)A_{k+1,l-1} - kA_{k,l}]
+ \frac{p}{2} [(l+1)A_{k-1,l+1} - lA_{k,l}]
+ \frac{p}{2} [(l+1)A_{k,l+1} - lA_{k,l}]
+ \frac{p}{2} \sum_{k,l} lA_{k,l} \cdot [(A_{k-1,l} - A_{k,l})]...
\]

\(Q(t, x, y) = \sum_{k,l} A_{k,l}(t)x^k y^l\),

\[
\frac{\partial Q}{\partial t} = \frac{\bar{p}}{2} \beta (y - x) \frac{\partial Q}{\partial x}
+ \left[\frac{1 + \bar{p} \alpha}{2} (x - y) + \frac{p}{2} (1 - y) \right] \frac{\partial Q}{\partial y}
+ \frac{p}{2} \gamma (x - 1) Q,
\]

\[
\alpha = \frac{Q_{yy}(t, 1, 1)}{Q_y(t, 1, 1)}, \quad \beta = \frac{Q_{xy}(t, 1, 1)}{Q_x(t, 1, 1)}
\gamma = \frac{Q_y(t, 1, 1)}{Q(t, 1, 1)} = \frac{\sum_{k,l} lA_{k,l}}{\sum_{k,l} A_{k,l}}.
\]

1. Introduction and Motivation

2. Link to PDEs

3. Summary and Future Challenges
The network is not encoded properly in the PDE: a_k depends not only on the network but also on the parameters of the dynamic, and a_k is a random variable.
The network is not encoded properly in the PDE: \(a_k \) depends not only on the network but also on the parameters of the dynamic, and \(a_k \) is a random variable.

Systematic approach to explore the reach and usefulness of a PDE approach to the study of spreading processes on networks.
The network is not encoded properly in the PDE: a_k depends not only on the network but also on the parameters of the dynamic, and a_k is a random variable.

Systematic approach to explore the reach and usefulness of a PDE approach to the study of spreading processes on networks.

Development of theory for estimating the error between the true stochastic and PDE model - employ existing results from other relevant areas.
The network is not encoded properly in the PDE: a_k depends not only on the network but also on the parameters of the dynamic, and a_k is a random variable.

- Systematic approach to explore the reach and usefulness of a PDE approach to the study of spreading processes on networks.

- Development of theory for estimating the error between the true stochastic and PDE model - employ existing results from other relevant areas.

- A more integrated approach to go from exact/true stochastic processes to mean-filed and PDE models, or exact/true stochastic to the PDE directly.
The network is not encoded properly in the PDE: a_k depends not only on the network but also on the parameters of the dynamic, and a_k is a random variable.

Systematic approach to explore the reach and usefulness of a PDE approach to the study of spreading processes on networks.

Development of theory for estimating the error between the true stochastic and PDE model - employ existing results from other relevant areas.

A more integrated approach to go from exact/true stochastic processes to mean-filed and PDE models, or exact/true stochastic to the PDE directly.

Any suggestions/ideas/links to existing results are welcome!
Thank you for your attention!