Convex Relaxations, Semidefinite Optimisation and Applications

#### Hamza Fawzi

Department of Electrical Engineering and Computer Science, Laboratory for Information and Decision Systems MIT, Cambridge, MA

DAMTP / Cantab Capital Institute on Mathematics of Information Cambridge, UK

May 9th, 2016

# Convexity



- Very rich mathematical theory with applications in many areas
- Fundamental role in optimisation
- How to describe convex sets?

#### A real-world optimisation problem

#### Optimal power flow



Conservation laws + Ohm's law

+ constraints on voltage and power magnitude



geni.org

### Convex formulation



of power flow equations

# Convex formulation



### Convex formulation



Main question: Can we get an efficient description of this convex set?

How to describe a convex set?



How to describe a convex set?

$$\begin{array}{c} -1 \leq x \leq 1 \\ -1 \leq y \leq 1 \end{array} \rightarrow 4 \text{ inequalities}$$

How to describe a convex set?

$$\begin{array}{c|c} -1 \leq x \leq 1 \\ -1 \leq y \leq 1 \end{array} \rightarrow 4 \text{ inequalities}$$



How to describe a convex set?

 $\begin{array}{l} -1 \le x \le 1 \\ -1 \le y \le 1 \end{array} \longrightarrow 4 \text{ inequalities}$ 



 $\rightarrow$  5 inequalities

How to describe a convex set?

 $\rightarrow 5$  inequalities

 $\rightarrow$  4 inequalities

 $-1 \le x \le 1$  $-1 \le y \le 1$ 



 $\rightarrow 6$  inequalities

How to describe a convex set?

Is there a better way?



# Lifting



# Lifting



Regular polygon with  $2^n$  sides can be described using only  $\approx n$  inequalities!

[Ben-Tal and Nemirovski, 2001]

What about "smooth" convex set?  $\rightarrow$  May need infinite number of inequalities!



What about "smooth" convex set?  $\rightarrow$  May need infinite number of inequalities!



$$\begin{bmatrix} 1-x & y \\ y & 1+x \end{bmatrix} \ge 0$$

What about "smooth" convex set?  $\rightarrow$  May need infinite number of inequalities!





What about "smooth" convex set?  $\rightarrow$  May need infinite number of inequalities!





What about "smooth" convex set?  $\rightarrow$  May need infinite number of inequalities!





#### Semidefinite optimisation

- Very powerful framework
- Used in many applications:
  - power flow
  - control theory and dynamical systems
  - combinatorial optimization
  - quantum information theory
  - ...

Helton-Nie conjecture: any convex semialgebraic set is a spectrahedral shadow

#### Semidefinite optimisation

- Very powerful framework
- Used in many applications:
  - power flow
  - control theory and dynamical systems
  - combinatorial optimization
  - quantum information theory
  - ...

Helton-Nie conjecture: any convex semialgebraic set is a spectrahedral shadow



Thank you!