# Convex Relaxations, Semidefinite Optimisation and Applications 

Hamza Fawzi

Department of Electrical Engineering and Computer Science, Laboratory for Information and Decision Systems MIT, Cambridge, MA

DAMTP / Cantab Capital Institute on Mathematics of Information

Cambridge, UK

May 9th, 2016

## Convexity



- Very rich mathematical theory with applications in many areas
- Fundamental role in optimisation
- How to describe convex sets?


## A real-world optimisation problem

## Optimal power flow



Conservation laws + Ohm's law
 minimise $\operatorname{cost}(P)$
$\sum_{k \in \mathcal{N}} \frac{1}{R_{i k}} V_{i} V_{k}=P_{i} \quad$ for each node $i$

+ constraints on voltage
and power magnitude

$$
3
$$

$$
\theta
$$

## Convex formulation



Main question: Can we get an efficient description of this convex set?

## Describing convex sets

How to describe a convex set?


## Describing convex sets

How to describe a convex set?


$$
\begin{aligned}
& -1 \leq x \leq 1 \\
& -1 \leq y \leq 1
\end{aligned}
$$

$\rightarrow 4$ inequalities

## Describing convex sets

How to describe a convex set?


$$
\begin{aligned}
& -1 \leq x \leq 1 \\
& -1 \leq y \leq 1
\end{aligned}
$$

$\rightarrow 4$ inequalities

## Describing convex sets

How to describe a convex set?


## Describing convex sets

How to describe a convex set?


$$
\begin{aligned}
& -1 \leq x \leq 1 \\
& -1 \leq y \leq 1
\end{aligned}
$$

$\rightarrow 4$ inequalities

$\rightarrow 5$ inequalities
$\rightarrow 6$ inequalities

## Describing convex sets

How to describe a convex set?


$$
\begin{aligned}
& -1 \leq x \leq 1 \\
& -1 \leq y \leq 1
\end{aligned}
$$

$\rightarrow 4$ inequalities

$\rightarrow 5$ inequalities
$\rightarrow 6$ inequalities

Is there a better way?
$=$

## Lifting



Regular polygon with $2^{n}$ sides can be described using only $\approx n$ inequalities!
[Ben-Tal and Nemirovski, 2001]

## Nonpolyhedral convex sets

> What about "smooth" convex set?
> $\rightarrow$ May need infinite number of inequalities!


## Nonpolyhedral convex sets

What about "smooth" convex set?<br>$\rightarrow$ May need infinite number of inequalities!



Linear Matrix Inequalities (Semidefinite Optimisation)

$$
\left[\begin{array}{cc}
1-x & y \\
y & 1+x
\end{array}\right] \geq 0
$$

## Nonpolyhedral convex sets

What about "smooth" convex set?<br>$\rightarrow$ May need infinite number of inequalities!



Linear Matrix Inequalities (Semidefinite Optimisation)

$$
\left[\begin{array}{cc}
1-x & y \\
y & 1+x
\end{array}\right] \geq 0
$$



## Nonpolyhedral convex sets

What about "smooth" convex set?<br>$\rightarrow$ May need infinite number of inequalities!



Linear Matrix Inequalities (Semidefinite Optimisation)

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1-x & y \\
y & 1+x
\end{array}\right] \geq 0} \\
& {\left[\begin{array}{ccc}
1 & x & y \\
x & 1 & z \\
y & z & 1
\end{array}\right] \geq 0}
\end{aligned}
$$



## Nonpolyhedral convex sets

```
What about "smooth" convex set?
\(\rightarrow\) May need infinite number of inequalities!
```



Linear Matrix Inequalities (Semidefinite Optimisation)

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1-x & y \\
y & 1+x
\end{array}\right] \geq 0} \\
& {\left[\begin{array}{lll}
1 & x & y \\
x & 1 & z \\
y & z & 1
\end{array}\right] \geq 0}
\end{aligned}
$$

## Semidefinite optimisation

- Very powerful framework
- Used in many applications:
- power flow
- control theory and dynamical systems
- combinatorial optimization
- quantum information theory
- ...

Helton-Nie conjecture: any convex semialgebraic set is a spectrahedral shadow

## Semidefinite optimisation

- Very powerful framework
- Used in many applications:
- power flow
- control theory and dynamical systems
- combinatorial optimization
- quantum information theory
- ...

Helton-Nie conjecture: any convex semialgebraic set is a spectrahedral shadow


Thank you!

