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Convexity

Very rich mathematical theory with applications in many areas

Fundamental role in optimisation

How to describe convex sets?



A real-world optimisation problem

Optimal power flow

Conservation laws + Ohm’s law

∑

k∈N

1

Rik
ViVk = Pi for each node i

+ constraints on voltage
and power magnitude

minimise cost(P )
geni.org



Convex formulation

feasible solutions
of power flow equations



Convex formulation



Convex formulation

Main question: Can we get an efficient description of this convex set?



Describing convex sets

How to describe a convex set?

Is there a better way?
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Lifting

Regular polygon with 2n sides can be described using only ≈ n inequalities!

[Ben-Tal and Nemirovski, 2001]
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Nonpolyhedral convex sets

What about “smooth” convex set?
→ May need infinite number of inequalities!

Linear Matrix Inequalities (Semidefinite Optimisation)
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Semidefinite optimisation

Very powerful framework

Used in many applications:

power flow
control theory and dynamical systems
combinatorial optimization
quantum information theory
...

Helton-Nie conjecture: any convex semialgebraic set is a spectrahedral shadow

Thank you!
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