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Motivation 

– The situation is economically unsustainable 

Nature Reviews | Drug Discovery
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following PDUFA
regulations plus small
bolus of HIV drugs 

The magnitude and duration of Eroom’s 

Law also suggests that a lot of the things that 

have been proposed to address the R&D pro-

ductivity problem are likely, at best, to have a 

weak effect. Suppose that we found that it cost 

80 times more in real terms to extract a tonne 

of coal from the ground today than it did 

60 years ago, despite improvements in mining  

machinery and in the ability of geologists 

to find coal deposits. We might expect coal 

industry experts and executives to provide 

explanations along the following lines: “The 

opencast deposits have been exhausted and 

the industry is left with thin seams that are 

a long way below the ground in areas that 

are prone to flooding and collapse.” Given 

this analysis, people could probably agree 

that continued investment would be justified 

by the realistic prospect of either massive 

improvements in mining technology or large 

rises in fuel prices. If neither was likely, it 

would make financial sense to do less digging.

However, readers of much of what has 

been written about R&D productivity in 

the drug industry might be left with the 

impression that Eroom’s Law can simply be 

reversed by strategies such as greater man-

agement attention to factors such as project 

costs and speed of implementation26, by 

reorganizing R&D structures into smaller 

focused units in some cases27 or larger units 

with superior economies of scale in others28, 

by outsourcing to lower-cost countries26,  

by adjusting management metrics and 

introducing R&D ‘performance score-

cards’29, or by somehow making scientists 

more ‘entrepreneurial’30,31. In our view, these 

changes might help at the margins but it 

feels as though most are not addressing  

the core of the productivity problem.

There have been serious attempts to 

describe the countervailing forces or to 

understand which improvements have been 

real and which have been illusory. However, 

such publications have been relatively 

rare. They include: the FDA’s ‘Critical Path 

Initiative’23; a series of prescient papers by 

Horrobin32–34, arguing that bottom-up  

science has been a disappointing distraction;  

an article by Ruffolo35 focused mainly on 

regulatory and organizational barriers;  

a history of the rise and fall of medical inno-

vation in the twentieth century by Le Fanu36; 

an analysis of the organizational challenges 

in biotechnology innovation by Pisano37; 

critiques by Young38 and by Hopkins et al.39, 

of the view that high-affinity binding of a 

single target by a lead compound is the best 

place from which to start the R&D process; 

an analysis by Pammolli et al.19, looking at 

changes in the mix of projects in ‘easy’ versus 

‘difficult’ therapeutic areas; some broad-

ranging work by Munos24; as well as a  

handful of other publications.

There is also a problem of scope. If we 

compare the analyses from the FDA23, 

Garnier27, Horrobin32–34, Ruffolo35, Le Fanu36, 

Pisano37, Young38 and Pammolli et al.19, there 

is limited overlap. In many cases, the differ-

ent sources blame none of the same counter-

vailing forces. This suggests that a more 

integrated explanation is required.

Seeking such an explanation is important 

because Eroom’s Law — if it holds — has 

very unpleasant consequences. Indeed, 

financial markets already appear to believe 

in Eroom’s Law, or something similar to it, 

and the impact is being seen in cost-cutting 

measures implemented by major drug com-

panies. Drug stock prices indicate that inves-

tors expect the financial returns on current 

and future R&D investments to be below 

the cost of capital at an industry level40, and 

 Eroom’s Law in pharmaceutical R&D. a
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R&D productivity - increasing costs per approved drug 

 

6 Sources:Tufts CSDD. Nature Rev Drug Discovery. PhRMA 
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What do we mean by complex data and decision-

making? 

 
– Most biological and clinical datasets are ‘complex’: 

– Large numbers of data points 

– Multiple sources of noise (random, biological, systematic) 

– May not include large numbers of samples (so not true ‘big data’) 

 

– ‘Decision-making’ requires data reduction to answer a 

specific question: 

– Typically requires a binary choice and/or reduction to a single 

variable, for example: 

– Is the drug binding to the target? 

– Is the drug having a biological effect?  How big an effect? 

– Will this patient respond to the drug?  By how much? 

7 



Improving decision-making in early drug 
development 



Parametric Sensitivity Analysis 
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determinant of overall R&D efficiency. In our baseline 

model, Phase II p(TS) is 34% (that is, 66% of compounds 

entering Phase II fail prior to Phase III). If Phase II attri-

tion increases to 75% (a p(TS) of only 25%), then the 

cost per NME increases to $2.3 billion, or an increase of 

29%. Conversely, if Phase II attrition decreases from 66% 

to 50% (that is, a p(TS) of 50%), then the cost per NME 

decreases by 25% to $1.33 billion. Similarly, our baseline 

value of p(TS) for Phase III molecules is 70%; that is, 

an attrition rate of 30%. If Phase III attrition increases 

to 40%, then the cost per NME will increase by 16% to 

$2.07 billion. Conversely, if Phase III attrition can be 

reduced to 20% (80% p(TS)), then the cost per NME 

will be reduced by 12% to $1.56 billion (FIG. 3).

Combining the impact of these increases or decreases 

in Phase II and Phase III attrition illustrates the profound 

effect of late-stage attrition on R&D efficiency. At the 

higher end of the Phase II and III attrition rates discussed 

above, the cost of an NME increases from our baseline 

case by almost $0.9 billion to $2.7 billion, whereas at the 

lower end of the above attrition rates for Phase II and III, 

the cost per NME is reduced to $1.17 billion. 

It is clear from our analyses that improving R&D effi-

ciency and productivity will depend strongly on reducing 

Phase II and III attrition. Unfortunately, industry trends 

suggest that both Phase II and III attrition are increas-

ing9,19–21, given both the more unprecedented nature of 

the drug targets being pursued, as well as heightened 

scrutiny and concerns about drug safety and the necessity 

of demonstrating a highly desirable benefit-to-risk ratio 

and health outcome for new medicines. However, main-

taining sufficient WIP while simultaneously reducing CT 

and C will also be necessary to improve R&D efficiency. 

We discuss these aspects first, before considering strategies 

to reduce attrition in depth.

Work in process (WIP). We have already emphasized 

the importance of having sufficient WIP at each phase 

of drug discovery and development, and have suggested 

that insufficient WIP, especially in discovery and the 

early phases of clinical development has contributed 

to the decline in NME approvals. To further illustrate 

this point and again demonstrate the impact of Phase II 

and Phase III attrition on Phase I WIP requirements, we 

have carried out another sensitivity analysis using these 

three parameters alone. FIG. 4 shows the impact of varying 

Phase II and III attrition on the number of Phase I entries 

per year required to launch a single NME annually. If the 

p(TS) in Phase II and Phase III are 25% and 50% respec-

tively, approximately 16 compounds must enter Phase I 

Figure 3 | R&D productivity model: parametric sensitivity analysis. This parametric sensitivity analysis is created 

from an R&D model that calculates the capitalized cost per launch based on assumptions for the model’s parameters  

(the probability of technical success (p(TS)), cost and cycle time, all by phase). When baseline values for each of the 

parameters are applied, the model calculates a capitalized cost per launch of US$1,778 million (see Supplementary 

information S2 (box) for details). This forms the spine of the sensitivity analysis (tornado diagram). The analysis varies each 

of the parameters individually to a high and a low value (while holding all other parameters constant at their base value) 

and calculates a capitalized cost per launch based on those new values for that varied parameter. In this analysis, the 

values of the parameters are varied from 50% lower and 50% higher relative to the baseline value for cost and cycle time 

and approximately plus or minus 10 percentage points for p(TS). Once cost per launch is calculated for the high and low 

values of each parameter, the parameters are ordered from highest to lowest based on the relative magnitude of impact 

on the overall cost per launch, and the swings in cost per launch are plotted on the graph. At the top of the graph are the 

parameters that have the greatest effect on the cost per launch, with positive effect in blue (for example, reducing cost) 

and negative effect in red. Parameters shown lower on the graph have a smaller effect on cost per launch. 

ANALYSIS

NATURE REVIEWS | DRUG DISCOVERY  VOLUM E 9 | M ARCH 2010 | 207
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De-risking Phase 2/3 using Biomarkers 

Biomarker 

Study 

Phase 1 

SD/MD 

Combined 

Phase 2a/2b 

Phase 2a 

(POC) 

STOP 

NORMAL GO 

FAST GO 

Proof of Pharmacology / PD measure 

Proof of Mechanism and/or Efficacy Prediction 

Model-based/mechanistic (in HVs) 

Early Signal of Efficacy in Patients 

Patient selection 

Preclinical 

Proof of Pharmacology / PD measure 

Proof of Mechanism 

Animal models of disease 

*  Biomarker study can be carried out in parallel  

with the MD study to save time, if a single acute  

dose design is used; some techniques such as 

EEG can potentially be integrated in the Phase 1 

(SD or MD) studies; 

Biomarker 

Study* 

Wilson, F.J. & Danjou P., 2015 Early Decision-Making in Drug Development: The Potential Role of 

Pharmaco-EEG and Pharmaco-Sleep, Neuropsychobiology, 72, pp.188-194. 



Fundamental PK-PD Principles 

– Recent review of 44 Phase 2 drug development projects at Pfizer 

 

– Examined based on 3 principles: 

PILLAR 1: Exposure at the target site of action 

PILLAR 2: Binding to the pharmacological target 

PILLAR 3: Expression of pharmacology 

 

– Summarised onto two axes: 

EXPOSURE CONFIDENCE: Based on Pillars 1 and 2 

PHARMACOLOGY CONFIDENCE: Based on Pillars 2 and 3 

 

 

Morgan et al, Can the flow of medicines be improved? Fundamental pharmacokinetic and 
pharmacological principles toward improving Phase II survival, Drug Discovery Today, 2012 



Fundamental PK-PD Principles 

 

 

 

17% POC success 

17% Phase 3 transition 

86% POC success 

57% Phase 3 transition 

0% PoC success 0% PoC success 

Morgan et al, Can the flow of medicines be improved? Fundamental pharmacokinetic and 
pharmacological principles toward improving Phase II survival, Drug Discovery Today, 2012 



Involves large neuronal populations that include all major neurotransmitter systems 

John, E Roy; Prichep, Leslie S, The relevance of QEEG to the evaluation of behavioral disorders 

and pharmacological interventions, Clinical EEG and Neuroscience, 37(2), pp. 135-43, 2006 

EEG – a window onto brain function 

 



Status of pEEG as a PD biomarker 

– Lots of historical issues with unclear results from pEEG 

 

– Propose a new framework for when to use pEEG as a PD biomarker: 

 

– Two simple criteria: 

– Preclinical experiments produce a robust result 

– We expect this to translate (based on best current knowledge) 

 

– Clinical study should be designed to test for the expected effect, with other 

pEEG measures as secondary endpoints 

Wilson, F.J. et al., 2014. Can pharmaco-electroencephalography help improve survival of central 

nervous system drugs in early clinical development? Drug discovery today, 19(3), pp.282–288. 



Classical Quantitative EEG Analysis 

– Generate frequency spectrum of signal (e.g. using Short-Term Fast Fourier 

Transform) 

– Split frequencies into bands (Delta, Theta, Alpha, Beta, Gamma) 

– Evaluate required endpoints: 

– Total and relative spectral power in each band 

– Power ratios 

– Coherence between different regions in each frequency band 

– Other parameters e.g. peak alpha frequency 
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Famous Example - Benzodiazepines 

– Complex PK-PD modelling with EEG works well e.g. 

Greenblatt DJ, von Moltke, LL, Ehrenberg, BL, Harmatz JS, Corbett KE, Wallace DW, Shader RI 2000 Kinetics 

and dynamics of lorazepam during and after continuous intravenous infusion Crit. Care Med. 28 2750-7  

following values: apparent half-lives of distribu-

tion and elimination (t1/2 and t1/2 , respec-

tively), elimination rateconstant (ke /k21),

clearance(CL V1ke), total volumeof distribu-

tion using the area method (Vd CL/ ), and

predicted steady-state plasma concentration of

lorazepam (Css Q/CL).

Examination of plots of pharmacodynamic

electroencephalographic effect vs. plasma

lorazepam concentration (E vs. C) indicated

counterclockwise hysteresis, consistent with a

delay in equilibration of lorazepam between

plasma and the site of pharmacodynamic ac-

tion in brain. This has been described in pre-

vious clinical and experimental studies of

lorazepam (9, 12–15, 34). Accordingly, the re-

lationship was modified to incorporate a dis-

tinct “effect-site,” at which the hypothetical

lorazepam concentration is CE. The apparent

rate constant for drug disappearance from the

effect compartment is kEO; this rate constant

determines the apparent half-life of drug

equilibration (t1/kEO) between plasma and ef-

fect site (Fig. 1) (31, 32, 34–36). Under these

assumptions, the relation of E to CE was pos-

tulated to beconsistent with a “Sigmoid Emax”

model, as follows:

E
Emax CE kEO

A

EC50
A CE kEO

A (2)

In Equation 2, Emax is the maximum phar-

macodynamic effect, EC50 is the value of CE

corresponding to 50% of Emax, and A is an ex-

ponent (the Hill coefficient). This represents a

previously described mathematical relationship

(31, 32) modified to contain an implicit conver-

sion of CE values such that CEkEOhas units of

concentration analogous to those in the central

compartment.

The relation of CE to time (t) was assumed

to be consistent with the following equation:

CE

D

V1

k21

kEO

e t

k21

kEO

e t

k21 kEO

kEO kEO

e kEOt

Q

V1

k21

kEO

1 e T e t

k21

kEO

1 e T e t

k21 kEO

kEO kEO kEO

1 ekEOT e kEO t

(3)

In Equation 3, T t when t is 4 hrs, and

T 4 when t is 4 hrs. D and Q werefixed as

described for Equation 1, and the values of ,

, k21, and V1 were fixed as determined for

that subject from nonlinear regression using

Equation 1.

Using Equations 2 and 3 simultaneously,

data points (E and t) were analyzed by nonlin-

ear regression. Iterated variables were Emax,

EC50, A, and kEO.

Data were analyzed for each subject indi-

vidually. We also determined an aggregate (or

composite) data set, formed by calculation of

average plasma lorazepam concentrations and

electroencephalographic changes across all

subjects at corresponding times. The single

data set formed by aggregation was analyzed

as described in this section.

RESULTS

All subjects reported sedative effects
associated with lorazepam administra-
tion. There were no adverse reactions or
untoward cardiovascular or respiratory
effects.

Plasma lorazepam concentrations
were consistent with Equation 1 in eight
of the nine subjects, based on visual in-
spection of the data (Fig. 2); in one sub-
ject, adistribution phase wasnot evident,
and data were analyzed using a one-
compartment model. Kinetic variables
(Table 1) were similar to those reported
in previous single-dose studies of loraz-
epam pharmacokinetics (9, 20–26). The
bolus-plus-infusion scheme rapidly pro-
duced mean plasma lorazepam concen-
trations in the range of 18–19 ng/mL,
values close to the mean ( SEM) pre-
dicted Css value of 24.1 ( 1.6) ng/mL.

The no-treatment trial, which evalu-
ated possible time-dependent electroen-
cephalographic changes, produced only
small changes over baseline in electroen-
cephalographic activity; all of these
changes were in the negative direction
(Fig. 3). Thelorazepam infusion trial pro-
duced significant increases in electroen-
cephalographic activity throughout the
24-hr duration of the study (Fig. 3). The
maximum changeover baseline wasmea-
sured 0.5 hr after initiation of lorazepam
dosage, whereas the maximum plasma
concentration wasmeasured immediately
after the loading dose (Fig. 4). Electroen-
cephalographic effects of lorazepam di-
minished somewhat between 1 and 4 hrs
after the start of the infusion, despite
essentially constant plasma concentra-
tions; however, these changes in electro-
encephalographic amplitude over time
were not significant.

Plots of plasma lorazepam concentra-
tion vs. electroencephalographic change
indicated counterclockwise hysteresis in
seven of the nine subjects (Fig. 5). The

Figure 1. Schematic representation of a two-compartment pharmacokinetic model, modified by incorpo-

ration of ahypothetical effect-site distinct from thecentral compartment. The “k ” designations represent

first-order rate constants having units of reciprocal time. k12 and k21 are intercompartmental distribution

rate constants. ke is the first-order elimination rate constant. kEO is the rate constant for drug disappear-

ance from the hypothetical effect-site. k1E is the rate constant for drug entry into the hypothetical

effect-site; it can beshown that thisquantity ultimately doesnot influence thecomputations (31, 32). I.V.,

intravenous.

2752 Crit Care Med 2000 Vol. 28, No. 8

following values: apparent half-lives of distribu-

tion and elimination (t1/2 and t1/2 , respec-

tively), elimination rate constant (ke /k21),

clearance (CL V1ke), total volume of distribu-

tion using the area method (Vd CL/ ), and

predicted steady-state plasma concentration of

lorazepam (Css Q/CL).

Examination of plots of pharmacodynamic

electroencephalographic effect vs. plasma

lorazepam concentration (E vs. C) indicated

counterclockwise hysteresis, consistent with a

delay in equilibration of lorazepam between

plasma and the site of pharmacodynamic ac-

tion in brain. This has been described in pre-

vious clinical and experimental studies of

lorazepam (9, 12–15, 34). Accordingly, the re-

lationship was modified to incorporate a dis-

tinct “effect-site,” at which the hypothetical

lorazepam concentration is CE. The apparent

rate constant for drug disappearance from the

effect compartment is kEO; this rate constant

determines the apparent half-life of drug

equilibration (t1/kEO) between plasma and ef-

fect site (Fig. 1) (31, 32, 34–36). Under these

assumptions, the relation of E to CE was pos-

tulated to be consistent with a “Sigmoid Emax”

model, as follows:

E
Emax CE kEO

A

EC50
A CE kEO

A (2)

In Equation 2, Emax is the maximum phar-

macodynamic effect, EC50 is the value of CE

corresponding to 50% of Emax, and A is an ex-

ponent (the Hill coefficient). This represents a

previously described mathematical relationship

(31, 32) modified to contain an implicit conver-

sion of CE values such that CEkEOhas units of

concentration analogous to those in the central

compartment.

The relation of CE to time (t) was assumed

to be consistent with the following equation:
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In Equation 3, T t when t is 4 hrs, and

T 4 when t is 4 hrs. D and Q were fixed as

described for Equation 1, and the values of ,

, k21, and V1 were fixed as determined for

that subject from nonlinear regression using

Equation 1.

Using Equations 2 and 3 simultaneously,

data points (E and t) were analyzed by nonlin-

ear regression. Iterated variables were Emax,

EC50, A, and kEO.

Data were analyzed for each subject indi-

vidually. We also determined an aggregate (or

composite) data set, formed by calculation of

average plasma lorazepam concentrations and

electroencephalographic changes across all

subjects at corresponding times. The single

data set formed by aggregation was analyzed

as described in this section.

RESULTS

All subjects reported sedative effects
associated with lorazepam administra-
tion. There were no adverse reactions or
untoward cardiovascular or respiratory
effects.

Plasma lorazepam concentrat ions
were consistent with Equation 1 in eight
of the nine subjects, based on visual in-
spection of the data (Fig. 2); in one sub-
ject, a distribution phase was not evident,
and data were analyzed using a one-
compartment model. Kinetic variables
(Table 1) were similar to those reported
in previous single-dose studies of loraz-
epam pharmacokinetics (9, 20–26). The
bolus-plus-infusion scheme rapidly pro-
duced mean plasma lorazepam concen-
trations in the range of 18–19 ng/mL,
values close to the mean ( SEM) pre-
dicted Css value of 24.1 ( 1.6) ng/mL.

The no-treatment trial, which evalu-
ated possible time-dependent electroen-
cephalographic changes, produced only
small changes over baseline in electroen-
cephalographic activity; all of these
changes were in the negative direction
(Fig. 3). The lorazepam infusion trial pro-
duced significant increases in electroen-
cephalographic activity throughout the
24-hr duration of the study (Fig. 3). The
maximum change over baseline was mea-
sured 0.5 hr after initiation of lorazepam
dosage, whereas the maximum plasma
concentration wasmeasured immediately
after the loading dose (Fig. 4). Electroen-
cephalographic effects of lorazepam di-
minished somewhat between 1 and 4 hrs
after the start of the infusion, despite
essentially constant plasma concentra-
tions; however, these changes in electro-
encephalographic amplitude over time
were not significant.

Plots of plasma lorazepam concentra-
tion vs. electroencephalographic change
indicated counterclockwise hysteresis in
seven of the nine subjects (Fig. 5). The

Figure 1. Schematic representation of a two-compartment pharmacokinetic model, modified by incorpo-

ration of a hypothetical effect-site distinct from the central compartment. The “k ” designations represent

first-order rate constants having units of reciprocal time. k12 and k21 are intercompartmental distribution

rate constants. ke is the first-order elimination rate constant. kEO is the rate constant for drug disappear-

ance from the hypothetical effect-site. k1E is the rate constant for drug entry into the hypothetical

effect-site; it can beshown that this quantity ultimately doesnot influence the computations (31, 32). I.V.,

intravenous.
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The Problems with Classical Analysis 

– Numerous potential endpoints (100s or 1000s): 

– 19 or more electrode positions 

– 5 frequency bands (more if subdivided) 

– Absolute and relative power values 

– Power ratios 

– Coherence measures (by scalp region and band) 

 

– Individual endpoints lack specificity 

– Readout often dependent on post hoc interpretation 

– Impossible to define criteria a priori to enable clear decisions 
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Generalised Semi-linear Canonical Correlation Analysis 

(GSLCCA) 

– Method developed to enhance utility of EEG as a PD biomarker by using 

data from the: 

– Whole spectrum (without dividing into bands) 

– Entire recording duration 

– All electrodes 

 

– To provide: 

– Interpretable mechanistic information 

– A PD measure 

 

– Assuming: 

– A PD profile of a known form (i.e. a given equation with unknown parameters) 

 

 

 Brain, P., Strimenopoulou, F. & Ivarsson, M., 2012. Generalized Semilinear Canonical Correlation Analysis Applied to the 

Analysis of Electroencephalogram (EEG) Data. Statistics in Biopharmaceutical Research, 4(2), pp.149–161. 

Brain et al, 2014. Extracting drug mechanism and pharmacodynamic information from clinical electroencephalography data 

using generalised semi-linear canonical correlation analysis. Physiological Measurement, 35(12), pp. 2459–2474. 



GSLCCA - Principle 
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GSLCCA – Example Results 

 

Mean t50 = 3.04 ± 0.88 minutes  

Clinical study with remifentanil 

Brain et al, 2014. Extracting drug mechanism and pharmacodynamic 

information from clinical electroencephalography data using generalised 

semi-linear canonical correlation analysis. Physiological Measurement, 

35(12), pp. 2459–2474. 



Quality control and data linkage in multi-
site clinical studies 



Linking Imaging to Other Clinical Endpoints 

Goal of stratified medicine is to allow a clinician to determine the optimal therapy or 

combination of therapies for an individual at the earliest possible stage 

 

– How can this be determined based on initial presentation of disease? 

– Integrated analysis of genomic and other data 

 

– Imaging is primary endpoint in many clinical studies 

 

– Incorporating imaging data to analysis is challenging 

– Raw data are essentially large volumes of pixel intensities 

– Requires semantically-rich descriptors to correlate with other data sources 

– Essentially a problem of knowledge extraction from image volumes 

 

– Not a classical Big Data problem 

– Relatively small number of samples (subject-visits) 

– Each sample is very well-characterised 

 

Strategy for “Big Data” and Stratified Medicine 
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Registration-Path Imaging Studies 

 

 

 

 

 

– Safety and efficacy 

– Established endpoints 

 

– Large(ish) sample populations 

– Data acquired globally in clinical radiology departments 

– Local and centralised independent radiological review 

 

– Regulated 

– Conservative 

Multisite and standardised 
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Acquire 

Quality  

Control 
Analyse Archive Deidentify     



 

Patient’s Name John Doe 

Patient ID BW129814 

Patient’s Sex Male 

Study Date 12-Nov-2010 

Patient's Birth Date 05-Apr-1960 

Modality CT 

Referring Physician Dave Smith 

Patient’s Name 001234 

Patient ID 001234 

Patient’s Sex Male 

Study Date 05-Dec-2007 

Patient's Birth Date 30-Jun-1960 

Modality CT 

Referring Physician 

Clinical Imaging Data 
Digital Imaging and Communications in Medicine (DICOM) 
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Sensitive Personally Identifiable Information 
Pixel deidentification 
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Response Evaluation Criteria in Solid Tumours (RECIST) 
Standard objective measures of response to therapy 

http://www.recist.com/recist-in-practice/ 
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Follow-on 

Baseline 



QC and Analysis Pipeline 

 

 

 

 

 

 

– Algorithms should be general 

– Validation overhead obviates study-specific software 

– Broad applicability across TAs 

 

– Outputs should include confidence estimate 

– Need to be able to identify false-positives 

 

– Challenges 

– Statistical bias: value of comparing data between studies? 

– Variations in acquisition  (multisite) 

Opportunities for automation 
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Classification and Automated QC 

– Characterise 

– Modality 

– Anatomical region 

– Contrasting agent 

– Gender 

– Age 

 

– QC 

– Correct person 

– Missing slices 

 

– Feature detection 

– Artefacts  

– Anomalies 

 

 

 

 

Randomised Decision Forests 

Courtesy Ben Glocker 

Glocker et al, Vertebrae Localization in Pathological Spine CT via Dense Classification 

from Sparse Annotations, in MICCAI, September 2013 

Criminisi et al, Regression Forests for Efficient Anatomy Detection and Localization in 

Computed Tomography Scans, in Medical Image Analysis (MedIA), Elsevier, 2013 

Criminisi et al, A Discriminative-Generative Model for Detecting Intravenous Contrast in 

CT Images, in MICCAI, September 2011. 
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Radiomics 
Detailed quantitative biomarkers are better predictors of survival? 

Aerts et al, Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014 5 4006 
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– A scalable analytics platform for GSK R&D based on Hadoop infrastructure and supporting 

analytics tools 

– Facilitates study of information brought together from multiple domains to uncover unique 

and actionable insights 

 

 

Integrative Data Analytics at GSK 
Using technology to make data more accessible 
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Project CRAWL 

 – Reporting of post-market adverse events 

relies on patient following formal process 

 

– CRAWL extends GSK’s safety activities 

to social media communications 

– Cloud-based validated system to monitor 

social media for drug safety in real time 

 

– Standardises colloquial language into 

medical terminology 

– Removes PII and unwanted noise  

 

– Highlights the questions being asked  

– Identifies potential supply chain concerns 

(adulteration, counterfeiting) 

– Safety listening lab monitors data 

 

Contextualisation of Real-World Drug-Use through Social Listening 
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http://epidemico.com/2015/04/22/2015-bio-it-world-best-practices-award-clinical-health-

it-winner-project-crawl/ 



Conclusions 

– Complex datasets include not only ‘Google style’ big data 

(i.e. billions of samples) but also other rich datasets (i.e. 

many data points but not necessarily large numbers of 

samples) 

 

– The pharmaceutical industry still relies on very simple 

analysis methods 

 

– There is significant scope for improvement! 
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