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Objectives

m Variational tools for classification (labelling, partitioning) of data

m Rigorous characterization large data limit (classification only mildly
affected by arrival of more data)

m Finite dimensional data (n data points in RY), infinite dimensional
inference



Tracking problems

Examples of infinite dimensional inference problems.
m Tracking multiple objects

m Image segmentation

Typical structure:
m Data points & € X, i =1...n (X is finite dimensional, n is large),
m Generating structure ¢ € Y* (Banach space),
m Unknown classification p(¢) € {1,2,..., k}



Tracking of multiple targets



Random variational setting

Standard statistical approach: Maximum likelihood estimation
Mathematical task: Optimize random fitness functional

fo i YEs R C— (¢

Interpretation: pg(¢) = Ziﬁefﬁ fr is a probability distribution, 3 > 1.

Mathematical challenges:

If dim(Y) = oo (curves, surfaces etc) existence of minimizers ¢ € Yk
not immediate

As n — oo convergence of extremizers (, not clear (rich data limit).

Applications: Inverse problems, data assimilation, tracking, image analysis,



Definition
Let (Y, dy) be a metric space, f,f,: Y — RU{—00,00}.
f is the I-limit of £, if

(lim inf inequality) For every sequence (" converging to ¢
fo(C) < ”nrlioréf fa(C"),
(Recovery sequence) There exists (¢") converging to ¢ such that

fxo(€) > limsup £,(¢7).

n—oo




Features of I-convergence

m Existence of f, is typically not hard to show

m f is lower semi-continuous, i.e. minimizers exist even if constraints
are applied

m Minimizers of f, converge to minimizers of f.,.

m Can deal with change of kinematics, e.g. Y, C Y can be finite
dimensional

m Is useful in pure mathematics (tool for oscillations) and mathematical
materials science (characterization of material instabilities and
microstructure)

Martensitic microstructures:




Example 1: Infinite dimensional k-means method

Standard clustering: Given & € X (data) find cluster centers ¢ € X* which
minimize

< H | f Z |£I C,lt(i)|p'

Generalization: ¢ € Yk

n

(Gn19)= ) 3 dEn G
where d : X x Y — R.
Motivation: £ could be observation, ( is a path.
& = (ti,x) €0, T xR ¢ e HY[o, T]),
d(§, Q) = Ix=<(@)l

Observation:
(a) Regularization required, (b) Existence of lim,_~ (" unclear
(c) Problem involves inference (¢) and classification (u(¢) € {1,...,k}).



Tracking example



Regularization

We consider

FV(C 1) = £ G e | €) + Ar(Q) with r(¢) = [|82¢] 2.

Theorem (Cade,Johansen,T., Thorpe SIAP 2014)

m d(x,-) is lower semicontinuous and p-integrable,
m & is iid with law p, p € {1,...,k} a.e. x,

w £ = [ a0 Gule)) pldx,de) + A r(C).
Then almost surely £ is the T-limit of £ in H([0, T]) x L**([0, T]).

Key results:

£

m Minimizers of converge in H([0, T]) to minimizers of £,

m fp, f,,()‘) random but f,, deterministic.



Tracking of multiple targets

Left: Generating process, Right: Partitioned data & estimated paths
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Remarks

Minimizers depend on regularization parameter A.

Finer results:
m Convergence rate of minimizers ("

m Vanishing regularization A = o(1) as n — oo



Convergence rate

Restriction of variational problem to non-crossing curves:

©= {C : min_min [¢j(t) — Ck(t)] > 0} :

te[0,T] i#j

Theorem (Johansen-Thorpe '15)

m (" € © minimizer of constrained problem,

then there exist deterministic curves (*° € © such that

J n __ 00
n|l_>l‘20< =( a.s,

and
lim_ nVar(||¢" — ¢*°||2) > 0 exists.

Previous results: Pollard (Ann. Stat. '87) established a Central Limit
Theorem when dim Y < oo.



Weak consistency

Truth is recoverable if A = o(1), n — oc.
Theorem (Johansen-Thorpe '15)
Assume data is generated by one curve (T
&= CT(Z',') + & with (j,', 1.',',8,') iid

and A\, = n"P. If
mpel03]
Then ¢"(t) — ¢1(t), n — oo pointwise in probability.

If p> 3 then limy_o0 E (||0%¢C"|[,2) = <.

Alternative approach: Establish strong convergence in weaker space e.g. L2.
Requires additional spaces and destroys the Bayesian structure.



Data classification

Sometimes p is not available (e.g. communities, medical data, etc) and the
classification task p needs additional structure.
Graphical methods

m Data W ={{,&,...}CY.
m Classification p: W — {1,... k}.
m Low dimensional representation 7: Y — Q c RY

m Similarity measure n : RY — R.

Misfit of classification p (Bertozzi,van-Gennip, Slepcev,. . .)

1
Wl O=2 X nlr(©) - (),
(&) F#n(E")

1
with 7. = e 97(-/¢) and € > (M) ‘.



Soft anisotropic classification

Our generalization: p© € R, 7 not radial:
11 )

Z ne(m(€) — (&) max{|p(€) — n(g)], 1},
E£E

where and V(u) = 0 if and only if = 0.
Advantages:

m Suitable for gradient based optimization methods

m Allows unclassified data, dist(x",Z) — 0 in measure as n — c©.



Continuum analogy: Ginzburg-Landau functional

Rl = = [ VuGoPax+= [ (2 - 17ax

Folu] { oper({n=1}) ifue{01}ae x

oo else

There exists surface energy o > 0 s.t. Fg is the '-limit of F. as ¢ — 0:
Modica '87, Sternberg '88. Nonlocal generalizations: Alberti-Bellettini '98.

If o0 = o(v), then

Folu) = { /6@:1} o(v)dS if pe{0,1} ae. x,

oo else



[-limit of f,

Theorem (Thorpe-T '15)
Define for i : Q — R constant on T (&)

fa(p [ €) = ffz V(dist(p(m(£)),{0,1}))
+2 n2 Z ne(m(§) = m(€')) max{|u(m(£)) — u(m ()], 1},
§#E!
o(v) = /n(x) |x - v| dx (convex 1-homogeneous function),
f. (N’) —_ { fJumpset of 102(X) J(l/) ds If:u(x) S {O, 1} a.e. X,
> oo else

If w(&;) is iid with law p, then fy is the T-limit of f, a.s.

The minimization problem is unstable if ¢ is not convex.



lllustration of graph structure

If n has compact support draw an edge if n(7 (&) — 7(£')) # 0.




Constrained minimizers
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Summary

m [-convergence is a useful tool to analyze statistical inference methods
in the large data limit

m Can identify asymptotic regime

m Can characterize infinite dimensional objects such as paths or dividing
surfaces

m Can deal with soft data classification/partition

Outlook
m Infinite dimensional data sets
m Low dimensional approximation, eg. PCA

m Posterior distribution
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