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1 
Embedded devices 
History, role and importance, use of 

cryptography 

2 Security challenges 
Nothing is ever easy …. 

3 Future directions 
Guess what: it is still not easy 



Embedded Devices 
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... Ghz 
processor, 
graphics, 
sound, 
wireless, 
bluetooth, 
SIM, GPS, … 

Pictures taken from various online resources. 



Key Characteristics of Embedded Devices 
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Micro and other 

processors, 

FPGAs 
Can be fast, powerful 

but must be energy 

efficient 

Connectivity 
 Often multiple 

standards are 

supported. 

Sensors 
Temperature, 

movement, etc. 
Real time 
Sensor nodes, cyber 

physical systems 

Security 
TLS, DTLS, IEEE 

802.15.4, EMVCO, 

PayTV standards 

Embedded OS 
Nowadays is multi- 

purpose, multi- 

tasking/threading 



Security Challenges: Implementation Attacks  
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Mostly via cat and mouse game, well documented 
in the Pay-TV application area: 
 F-card to H-card: no crypto to poor crypto, 
 Countered by the ‘infinite loop’, counteracted by  

 the ‘un looper’ (glitching boards) 
 Countered by frequent updates that are necessary 

descramble content, hackers up their game and 
provide ‘life patches’ (i.e. within 15 mins)! 

 Finally, content providers demand serious  
investment into side channel and tamper resistant smart card.  (Now the set top box is the  
prime target.) 

 
Point is: Content providers demanded strong security. Similarly, security evolved in other 
 systems, e.g. GSM/UMTS (required 3 generations to become robust). 
Automotive security still in its infancy, smart meters, and anything IoT.  
But who will be ‘demanding’ strong security there? 
 



Security Challenges/Failures: e.g. CC2538 
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32-bit ARM CPU  

Has AES in hardware, 

as well as ECC but not 

documented (until 

recently), PRNG 

support 

Contiki OS 
. 

Reasons 

Standards not clear enough for non-domain experts,  

developers not sufficiently aware, insufficient support for crypto in hardware, lack 

of memory in the community, no security evaluation standards.  

 

Not to mention that they hardware crypto is neither leakage nor tamper resistant. 

Implements DTLS with 

a fatal flaw: PRNG 

produces biased 16 bit 

output 

http://www.theregister.co.uk/2010/01/15/smart_meter_crypto_flaw/ 

http://www.theregister.co.uk/2010/01/15/smart_meter_crypto_flaw/
http://www.theregister.co.uk/2010/01/15/smart_meter_crypto_flaw/
http://www.theregister.co.uk/2010/01/15/smart_meter_crypto_flaw/
http://www.theregister.co.uk/2010/01/15/smart_meter_crypto_flaw/
http://www.theregister.co.uk/2010/01/15/smart_meter_crypto_flaw/


Future Directions 
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1 
Verifiable implementations 
Compiler support, language support, 

leakage simulators, … 

3 Leakage resilience per design 
Primitives that tolerate some leakage 

under reasonable assumptions 

2 Meaningful Leakage evaluations 
Need to account for increase in 

computing power as part of evaluations 



Verifiable Implementations, 1 
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Need to (formally) verify the correctness (functionally, 
cryptographically, leakage) of implementations (aka code): 
 Advances made by Dupressoir et al. w.r.t. verifying implementations of masking 

schemes: but all with simple leakage models 
 But instructions leak depending on what happens before and after! 

 



Verifiable Implementations, 2 
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Need to (formally) verify the correctness (functionally, 
cryptographically, leakage) of implementations (aka code): 
 Advances made by Dupressoir et al. w.r.t. verifying implementations of masking 

schemes: but all with simple leakage models 
 

Meet ELMO: Emulating Leaks for the M0! 
 A statistical modeling approach capturing instruction-level 

leakage models for arbitrary instruction sequences (i.e. 
processor states) working with 32-bit data 
 Test the contribution of explanatory variables with an F-

test and keep only those ‘that matter’ 
 For the ARM Cortex-M0 using instruction-triplets leads to 

excellent models 
 Shown via comparative leakage detection tests on real vs. 

ELMO data. 
 Using ELMO one can verify leakage without access to a testing 

lab! 



Meaningful Leakage Evaluations, 1 

11 

But is this the best strategy or are these typical results? 
 



Meaningful Leakage Evaluations, 2 
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Previous slide suggests 50k 
‘traces’ for  key rank 0 using a 
single target attack. 
 
What are the characteristics of 
the rank distribution? 

- On a single workstations (hexa-core Ivy Bridge-EP Intel Xeon E5-1650v2 CPU and 32 GiB 
of 1600 MHz DDR3 RAM), we enumerated/verified 2^(41.8) AES keys in 24 hours 

- 400 nodes of BlueCrystal (Sandy Bridge Intel Xeon E5-2670 CPUs, clocked at 2.6 GHz 
and with 4 GiB RAM available per core), we enumerated/verified 2^(47.99) AES keys in  
32.42 hours (could be bought in from Amazon at 680.82 USD).  

How low can you go w.r.t. key 
rank? Labynkyr is a multi-
threaded implementation of 
fastest enumeration/verification 
algorithm (Asiacrypt 2015): 
 



Leakage Resilience per Design 
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Probing model, random probing model, noisy probing model, noisy leakage 
model: simple circuit with Gaussian noise 
Higher order masking, aka secret sharing, threshold implementations, 

very active area of research 
 

 Leakage resilient cryptography: OCLI with lambda leakage (i.e. arbitrary 
function of well defined state leaks up to lambda bits) 
Most constructions too expensive, unrealistically strong yet any 

straightforward implementation would still need countermeasures, but  
a very promising key update by Kiltz-Pietrzak that has spun off several 
primitive, loose connection with ‘fresh rekeying’ 
 

Verifiable leakage (under physical assumptions): theoretical leakage 
simulator, with a a practical realisation, leading to typical real vs. 
ideal/simulated proofs 
We showed that the only proposed simulator is irreparably flawed. 

 



Conclusion 
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1 
Cryptography requires careful standardisation and 

implementation 

Cryptographic standards have to do more than just provide high-level 

specifications (i.e. they serve more than interoperability), they need to 

ensure that ‘stupid’ mistakes are less likely. 

Implementing cryptography has to evolve from being an ‘art’: we need 

verifiable implementations, that take information leakage into account. 

2 Cryptography has to be pragmatic  
Cryptography has to actually address security needs: e.g. authenticated 

encryption that is resilient to leakage and probing attacks in the real 

world, group key exchange/update with leakage/probing resilience, etc.  

All whilst being ‘cheap’ enough to work on ‘small’ devices. 



Thank you for your attention 

www.silent.cs.bris.ac.uk 
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