
Cryptography for
Embedded Systems

Elisabeth Oswald

Reader, University of Bristol

1

Outline

2

1
Embedded devices
History, role and importance, use of

cryptography

2 Security challenges
Nothing is ever easy ….

3 Future directions
Guess what: it is still not easy

Embedded Devices

3

... Ghz
processor,
graphics,
sound,
wireless,
bluetooth,
SIM, GPS, …

Pictures taken from various online resources.

Key Characteristics of Embedded Devices

4

Micro and other

processors,

FPGAs
Can be fast, powerful

but must be energy

efficient

Connectivity
 Often multiple

standards are

supported.

Sensors
Temperature,

movement, etc.
Real time
Sensor nodes, cyber

physical systems

Security
TLS, DTLS, IEEE

802.15.4, EMVCO,

PayTV standards

Embedded OS
Nowadays is multi-

purpose, multi-

tasking/threading

Security Challenges: Implementation Attacks

5

Mostly via cat and mouse game, well documented
in the Pay-TV application area:
 F-card to H-card: no crypto to poor crypto,
 Countered by the ‘infinite loop’, counteracted by

 the ‘un looper’ (glitching boards)
 Countered by frequent updates that are necessary

descramble content, hackers up their game and
provide ‘life patches’ (i.e. within 15 mins)!

 Finally, content providers demand serious
investment into side channel and tamper resistant smart card. (Now the set top box is the
prime target.)

Point is: Content providers demanded strong security. Similarly, security evolved in other
 systems, e.g. GSM/UMTS (required 3 generations to become robust).
Automotive security still in its infancy, smart meters, and anything IoT.
But who will be ‘demanding’ strong security there?

Security Challenges/Failures: e.g. CC2538

6

32-bit ARM CPU

Has AES in hardware,

as well as ECC but not

documented (until

recently), PRNG

support

Contiki OS
.

Reasons

Standards not clear enough for non-domain experts,

developers not sufficiently aware, insufficient support for crypto in hardware, lack

of memory in the community, no security evaluation standards.

Not to mention that they hardware crypto is neither leakage nor tamper resistant.

Implements DTLS with

a fatal flaw: PRNG

produces biased 16 bit

output

http://www.theregister.co.uk/2010/01/15/smart_meter_crypto_flaw/

http://www.theregister.co.uk/2010/01/15/smart_meter_crypto_flaw/
http://www.theregister.co.uk/2010/01/15/smart_meter_crypto_flaw/
http://www.theregister.co.uk/2010/01/15/smart_meter_crypto_flaw/
http://www.theregister.co.uk/2010/01/15/smart_meter_crypto_flaw/
http://www.theregister.co.uk/2010/01/15/smart_meter_crypto_flaw/

Future Directions

8

1
Verifiable implementations
Compiler support, language support,

leakage simulators, …

3 Leakage resilience per design
Primitives that tolerate some leakage

under reasonable assumptions

2 Meaningful Leakage evaluations
Need to account for increase in

computing power as part of evaluations

Verifiable Implementations, 1

9

Need to (formally) verify the correctness (functionally,
cryptographically, leakage) of implementations (aka code):
 Advances made by Dupressoir et al. w.r.t. verifying implementations of masking

schemes: but all with simple leakage models
 But instructions leak depending on what happens before and after!

Verifiable Implementations, 2

10

Need to (formally) verify the correctness (functionally,
cryptographically, leakage) of implementations (aka code):
 Advances made by Dupressoir et al. w.r.t. verifying implementations of masking

schemes: but all with simple leakage models

Meet ELMO: Emulating Leaks for the M0!
 A statistical modeling approach capturing instruction-level

leakage models for arbitrary instruction sequences (i.e.
processor states) working with 32-bit data
 Test the contribution of explanatory variables with an F-

test and keep only those ‘that matter’
 For the ARM Cortex-M0 using instruction-triplets leads to

excellent models
 Shown via comparative leakage detection tests on real vs.

ELMO data.
 Using ELMO one can verify leakage without access to a testing

lab!

Meaningful Leakage Evaluations, 1

11

But is this the best strategy or are these typical results?

Meaningful Leakage Evaluations, 2

12

Previous slide suggests 50k
‘traces’ for key rank 0 using a
single target attack.

What are the characteristics of
the rank distribution?

- On a single workstations (hexa-core Ivy Bridge-EP Intel Xeon E5-1650v2 CPU and 32 GiB
of 1600 MHz DDR3 RAM), we enumerated/verified 2^(41.8) AES keys in 24 hours

- 400 nodes of BlueCrystal (Sandy Bridge Intel Xeon E5-2670 CPUs, clocked at 2.6 GHz
and with 4 GiB RAM available per core), we enumerated/verified 2^(47.99) AES keys in
32.42 hours (could be bought in from Amazon at 680.82 USD).

How low can you go w.r.t. key
rank? Labynkyr is a multi-
threaded implementation of
fastest enumeration/verification
algorithm (Asiacrypt 2015):

Leakage Resilience per Design

13

Probing model, random probing model, noisy probing model, noisy leakage
model: simple circuit with Gaussian noise
Higher order masking, aka secret sharing, threshold implementations,

very active area of research

 Leakage resilient cryptography: OCLI with lambda leakage (i.e. arbitrary
function of well defined state leaks up to lambda bits)
Most constructions too expensive, unrealistically strong yet any

straightforward implementation would still need countermeasures, but
a very promising key update by Kiltz-Pietrzak that has spun off several
primitive, loose connection with ‘fresh rekeying’

Verifiable leakage (under physical assumptions): theoretical leakage
simulator, with a a practical realisation, leading to typical real vs.
ideal/simulated proofs
We showed that the only proposed simulator is irreparably flawed.

Conclusion

14

1
Cryptography requires careful standardisation and

implementation

Cryptographic standards have to do more than just provide high-level

specifications (i.e. they serve more than interoperability), they need to

ensure that ‘stupid’ mistakes are less likely.

Implementing cryptography has to evolve from being an ‘art’: we need

verifiable implementations, that take information leakage into account.

2 Cryptography has to be pragmatic
Cryptography has to actually address security needs: e.g. authenticated

encryption that is resilient to leakage and probing attacks in the real

world, group key exchange/update with leakage/probing resilience, etc.

All whilst being ‘cheap’ enough to work on ‘small’ devices.

Thank you for your attention

www.silent.cs.bris.ac.uk

15

(Useful) References

16

Longo, Martin, Mather, Oswald, Sach, Stam: How low can you go?. IACR ePrint Archive 2016: 609 (2016)

Martin, Mather, Oswald, Stam: Characterisation and Estimation of the Key Rank Distribution in the
Context of Side Channel Evaluations. IACR ePrint Archive 2016: 491 (2016)

McCann, Whitnall, Oswald: ELMO: Emulating Leaks for the ARM Cortex-M0 without Access to a Side
Channel Lab. IACR ePrint Archive 2016: 517 (2016)

Martin, O'Connell, Oswald, Stam: Counting Keys in Parallel After a Side Channel Attack. ASIACRYPT (2)
2015: 313-337

Martin, Oswald, Stam, Wójcik: A Leakage Resilient MAC. IMA Int. Conf. 2015: 295-310

Longo, Martin, Oswald, Page, Stam, Tunstall: Simulatable Leakage: Analysis, Pitfalls, and New
Constructions. ASIACRYPT (1) 2014: 223-242

Whitnall, Oswald: Profiling DPA: Efficacy and Efficiency Trade-Offs. CHES 2013: 37-54

Barthe, Belaïd, Dupressoir, Fouque, Grégoire, Strub: Verified Proofs of Higher-Order Masking.
 EUROCRYPT (1) 2015: 457-485
Kiltz, Pietrzak: Leakage Resilient ElGamal Encryption. ASIACRYPT 2010: 595-612
Medwed, Standaert, Großschädl, Regazzoni: Fresh Re-keying: Security against Side-Channel and Fault
 Attacks for Low-Cost Devices. AFRICACRYPT 2010: 279-296

