Variational problems on graphs and their continuum limits

Dejan Slepčev
Carnegie Mellon University

Data-Rich Phenomena

Modelling, Analysing \& Simulation Using Partial Differential Equations
14-16 December 2015, Cambridge

- Xavier Bresson (EPFL)
- James von Brecht (California State Long Beach)
- Nicolás García Trillos (Brown University)
- Thomas Laurent (LMU)

Clustering

- Partition the data into meaningful groups.

Graph-Based Clustering

- Determine a similarity measure between images
- Construct a graph based on the similarity measure.

Graph-Based Clustering

- Determine a similarity measure between images
- Construct a graph based on the similarity measure.
- Partition the graph

From point clouds to graphs

- Let $V=\left\{X_{1}, \ldots, X_{n}\right\}$ be a point cloud in \mathbb{R}^{d} :

- Connect nearby vertices: Edge weights $W_{i, j}$.

From point clouds to graphs

- Let $V=\left\{X_{1}, \ldots, X_{n}\right\}$ be a point cloud in \mathbb{R}^{d} :

- Connect nearby vertices: Edge weights $W_{i, j}$.

From point clouds to graphs

- Let $V=\left\{X_{1}, \ldots, X_{n}\right\}$ be a point cloud in \mathbb{R}^{d} :

- Connect nearby vertices: Edge weights $W_{i, j}$.

Graph cut

- Let $V=\left\{X_{1}, \ldots, X_{n}\right\}$ be a point cloud in \mathbb{R}^{d} :

- Connect nearby vertices: Edge weights $W_{i, j}$
- Graph Cut: $A \subset V$.

$$
\operatorname{Cut}\left(A, A^{c}\right)=\sum_{i \in A} \sum_{j \in A^{c}} W_{i, j} .
$$

- Let $V=\left\{X_{1}, \ldots, X_{n}\right\}$ be a point cloud in \mathbb{R}^{d} :

- Connect nearby vertices: Edge weights $W_{i, j}$
- Minimize: $A \subset V$.

$$
\operatorname{Cut}\left(A, A^{c}\right)=\sum_{i \in A} \sum_{j \in A^{c}} W_{i, j} .
$$

- Let $V=\left\{X_{1}, \ldots, X_{n}\right\}$ be a point cloud in \mathbb{R}^{d} :

- Graph Cut: $A \subset V$.

$$
\operatorname{Cut}\left(A, A^{c}\right)=\sum_{i \in A} \sum_{j \in A^{c}} W_{i, j} .
$$

- Cheeger Cut: Minimize

$$
G C(A)=\frac{\operatorname{Cut}\left(A, A^{c}\right)}{\min \left\{|A|,\left|A^{c}\right|\right\}} .
$$

Graph Constructions

- proximity based graphs

$$
W_{i, j}=\eta\left(X_{i}-X_{j}\right)
$$

- kNN graphs: Connect each vertex with its k nearest neighbors

Task

Minimize
 $$
G C(A)=\frac{\sum_{i \in A} \sum_{j \in A^{c}} W_{i, j}}{\min \left\{|A|,\left|A^{c}\right|\right\}}
$$

Task

Minimize

$$
G C(A)=\frac{\sum_{i \in A} \sum_{j \in A^{c}} W_{i, j}}{\min \left\{|A|,\left|A^{c}\right|\right\}}
$$

Algorithm of Bresson, Laurent, Uminsky and von Brecht (2013).

Graph Total Variation

Graph total variation
For a function $u: V \rightarrow \mathbb{R}$

$$
G T V_{n}(u)=\frac{1}{n^{2}} \sum_{i, j} W_{i, j}\left|u_{i}-u_{j}\right|
$$

where $u_{i}=u\left(X_{i}\right)$.
Note that for a set of vertices $A \subset V$

$$
\operatorname{GTV}_{n}\left(\chi_{A}\right)=\frac{1}{n^{2}} \operatorname{Cut}\left(A, A^{c}\right)
$$

where χ_{A} is the characteristic function of A

$$
\chi_{A}\left(X_{i}\right)= \begin{cases}1 & \text { if } x_{i} \in A \\ 0 & \text { otherwise }\end{cases}
$$

$$
G T V_{n}(u)=\frac{1}{n^{2}} \sum_{i, j} w_{i, j}\left|u_{i}-u_{j}\right| .
$$

Balance term

$$
B_{n}(u)=\frac{1}{n} \min _{c \in \mathbb{R}} \sum_{i}\left|u_{i}-c\right|
$$

Note that

$$
B_{n}\left(\chi_{A}\right)=\frac{1}{n} \min \left\{|A|,\left|A^{C}\right|\right\} .
$$

Relaxed problem

Minimize

$$
G C_{n}(u)=\frac{G T V_{n}(u)}{B_{n}(u)}
$$

Theorem

Relaxation is exact: There exists a set of vertices A_{n} such that $u_{n}=\chi_{A_{n}}$ minimizes $G C_{n}$.

Ground Truth Assumption

Assume points X_{1}, X_{2}, \ldots, are drawn i.i.d out of measure $d \nu=\rho d x$

Total variation in continuum setting

- $d \nu=\rho d x$ probability measure, $\operatorname{supp}(\nu)=D, 0<\lambda \leq \rho \leq \frac{1}{\lambda}$ on D.

Weighted relative perimeter
Given $A \subset D$

$$
P\left(A ; D, \rho^{2}\right)=\int_{D \cap \partial A} \rho^{2} d S_{d-1}
$$

Weighted TV

$$
T V\left(u, \rho^{2}\right)=\int_{D}|\nabla u| \rho^{2} d x
$$

Total variation in continuum setting

- $d \nu=\rho d x$ probability measure, $\operatorname{supp}(\nu)=D, 0<\lambda \leq \rho \leq \frac{1}{\lambda}$ on D.

Weighted relative perimeter
Given $A \subset D$

$$
P\left(A ; D, \rho^{2}\right)=\int_{D \cap \partial A} \rho^{2} d S_{d-1}=T V\left(\chi_{A}, \rho^{2}\right)
$$

Weighted TV

$$
T V\left(u, \rho^{2}\right)=\sup \left\{\int_{D} u \operatorname{div}(\phi) d x:|\phi| \leq \rho^{2}, \phi \in C_{c}^{\infty}\left(D, \mathbb{R}^{d}\right)\right\}
$$

Clustering in continuum setting

- ν probability measure with compact support $\operatorname{supp}(\nu)=D$.
- ν has continuous on D density ρ and $0<\lambda \leq \rho \leq \frac{1}{\lambda}$ on D.

Weighted TV

$$
T V\left(u, \rho^{2}\right)=\sup \left\{\int_{D} u \operatorname{div}(\phi) d x:|\phi| \leq \rho^{2}, \phi \in C_{c}^{\infty}\left(D, \mathbb{R}^{d}\right)\right\}
$$

Weighted relative perimeter
Given $A \subset D \quad P\left(A ; D, \rho^{2}\right)=T V\left(\chi_{A}, \rho^{2}\right)$
Balance term

$$
B(A)=\min \{|A|, 1-|A|\} \quad \text { where }|A|=\nu(A) .
$$

Weighted Cheeger Cut: Minimize

$$
C(A)=\frac{P\left(A ; D, \rho^{2}\right)}{B(A)}
$$

- ν probability measure with compact support $\operatorname{supp}(\nu)=D$.
- ν has continuous on D density ρ and $0<\lambda \leq \rho \leq \frac{1}{\lambda}$ on D.

Weighted TV

$$
T V\left(u, \rho^{2}\right)=\sup \left\{\int_{D} u \operatorname{div}(\phi) d x:|\phi| \leq \rho^{2}, \phi \in C_{c}^{\infty}\left(D, \mathbb{R}^{d}\right)\right\}
$$

Balance term

$$
B(u)=\min _{c \in \mathbb{R}} \int_{D}|u(x)-c| \rho(x) d x
$$

Minimize

$$
C(u)=\frac{T V\left(u, \rho^{2}\right)}{B(u)}
$$

Clustering in continuum setting

Minimize

$$
C(u)=\frac{T V\left(u, \rho^{2}\right)}{B(u)}
$$

Consistency of clustering

Do the minimizers of

$$
G C_{n}\left(u_{n}\right)=\frac{1}{n} \frac{\sum_{i, j} W_{i, j}\left|u_{i}-u_{j}\right|}{\min _{c \in \mathbb{R}} \sum_{i}\left|u_{i}-c\right|}
$$

converge as the number of data points $n \rightarrow \infty$ to a minimizer of

$$
C(u)=\frac{T V\left(u, \rho^{2}\right)}{\min _{c \in \mathbb{R}} \int_{D}|u(x)-c| \rho(x) d x} ?
$$

Localizing the kernel as $n \rightarrow \infty$

$$
\eta_{\varepsilon}(z)=\frac{1}{\varepsilon^{d}} \eta\left(\frac{z}{\varepsilon}\right)
$$

Consistency of clustering II

Do the minimizers of

$$
G C_{n, \varepsilon_{n}}\left(u^{n}\right)=\frac{1}{n} \frac{\frac{1}{\varepsilon_{n}} \sum_{i, j} \eta_{\varepsilon_{n}}\left(X_{i}-X_{j}\right)\left|u_{i}^{n}-u_{j}^{n}\right|}{\min _{c \in \mathbb{R}} \sum_{i}\left|u_{i}^{n}-c\right|}
$$

converge as the number of data points $n \rightarrow \infty$ to a minimizer of

$$
C(u)=\frac{T V\left(u, \rho^{2}\right)}{\min _{c \in \mathbb{R}} \int_{D}|u(x)-c| \rho(x) d x} ?
$$

Question 1: For what scaling of $\varepsilon(n)$ can this hold? Question 2: What is the topology for which $u^{n} \longrightarrow u$?

$$
n=120, \varepsilon=0.15
$$

$$
n=120, \varepsilon=0.20
$$

$$
n=120, \varepsilon=0.30
$$

$$
n=120, \varepsilon=0.40
$$

Consistency results in machine learning

- Arias Castro, Pelletier, and Pudlo 2012 - partial results on the problem
- Pollard 1981-k -means
- Hartigan 1981-single linkage
- Belkin and Niyogi 2006 - Laplacian eigenmaps
- von Luxburg, Belkin, and Bousquet 2004, 2008 - spectral embedding

What was known

Consistency results in machine learning

- Arias Castro, Pelletier, and Pudlo 2012 - partial results on the problem
- Pollard 1981-k -means
- Hartigan 1981-single linkage
- Belkin and Niyogi 2006 - Laplacian eigenmaps
- von Luxburg, Belkin, and Bousquet 2004, 2008 - spectral embedding

Calculus of Variations

Discrete to continuum for functionals on grids: Braides 2010, Braides and Yip 2012, Chambolle, Giacomini and Lussardi 2012, Gobbino and Mora 2001, Van Gennip and Bertozzi 2014

Г-Convergence
$\left(Y, d_{Y}\right)$ - metric space, $F_{n}: Y \rightarrow[0, \infty]$

Definition

The sequence $\left\{F_{n}\right\}_{n \in \mathbb{N}} \Gamma$-converges (w.r.t d_{Y}) to $F: Y \rightarrow[0, \infty]$ if:
Liminf inequality: For every $y \in Y$ and whenever $y_{n} \rightarrow y$

$$
\liminf _{n \rightarrow \infty} F_{n}\left(y_{n}\right) \geq F(y),
$$

Limsup inequality: For every $y \in Y$ there exists $y_{n} \rightarrow y$ such that

$$
\limsup _{n \rightarrow \infty} F_{n}\left(y_{n}\right) \leq F(y)
$$

Definition (Compactness property)

$\left\{F_{n}\right\}_{n \in \mathbb{N}}$ satisfies the compactness property if
$\left.\begin{array}{l}\left\{y_{n}\right\}_{n \in \mathbb{N}} \text { bounded and } \\ \left\{F_{n}\left(y_{n}\right)\right\}_{n \in \mathbb{N}} \text { bounded }\end{array}\right\} \Longrightarrow\left\{y_{n}\right\}_{n \in \mathbb{N}}$ has convergent subsequence

Proposition: Convergence of minimizers

Γ-convergence and Compactness imply: If y_{n} is a minimizer of F_{n} and $\left\{y_{n}\right\}_{n \in N}$ is bounded in Y then along a subsequence

$$
y_{n} \rightarrow y \quad \text { as } n \rightarrow \infty
$$

and

$$
y \text { is a minimizer of } F \text {. }
$$

In particular, if F has a unique minimizer, then a sequence $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ converges to the unique minimizer of F.

Consistency of clustering III

Show that

$$
G C_{n, \varepsilon_{n}}\left(u^{n}\right)=\frac{1}{n} \frac{\frac{1}{\varepsilon_{n}} \sum_{i, j} \eta_{\varepsilon_{n}}\left(X_{i}-X_{j}\right)\left|u_{i}^{n}-u_{j}^{n}\right|}{\min _{c \in \mathbb{R}} \sum_{i}\left|u_{i}^{n}-c\right|}
$$

Γ-converge as the number of data points $n \rightarrow \infty$, and $\varepsilon_{n} \rightarrow 0$ at certain rate to

$$
F(u)=\frac{\sigma T V\left(u, \rho^{2}\right)}{\min _{c \in \mathbb{R}} \int_{D}|u(x)-c| \rho(x) d x}
$$

and show that compactness property holds.
Questions
(1) For what scaling of $\varepsilon(n)$ can this hold?
(2) What is the topology for $u^{n} \longrightarrow u$?

Consistency of graph total variation

Show that

$$
G T V_{n, \varepsilon_{n}}\left(u^{n}\right)=\frac{1}{\varepsilon_{n} n^{2}} \sum_{i, j} \eta_{\varepsilon_{n}}\left(X_{i}-X_{j}\right)\left|u_{i}^{n}-u_{j}^{n}\right|
$$

Γ-converge to $\sigma T V\left(u, \rho^{2}\right)$, as the number of data points $n \rightarrow \infty$, and $\varepsilon_{n} \rightarrow 0$ at certain rate and show that compactness property holds.

Questions

(1) For what scaling of $\varepsilon(n)$ can this hold?
(2) What is the topology for $u^{n} \longrightarrow u$?

Consider domain D and $V_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ random i.i.d points.

- How to compare $u_{n}: V_{n} \rightarrow \mathbb{R}$ and $u: D \rightarrow \mathbb{R}$ in a way consistent with L^{1} topology?

Note that $u \in L^{1}(\nu)$ and $u_{n} \in L^{1}\left(\nu_{n}\right)$, where $\nu_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}$.

Topology

Consider domain D and $V_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ random i.i.d points.

- How to compare $u_{n} \in L^{1}\left(\nu_{n}\right)$ and $u \in L^{1}(D)$ in a way consistent with L^{1} topology?

An idea: Divide the domain D into n sets of the same ν measure and to each piece associate a point X_{i}. That is, consider a map $T_{n}: D \rightarrow D$ such that $T_{\#} \nu=\nu_{n}$.

Divide the domain D into n pieces and to each piece associate a point X_{i}. That is, consider a map $T_{n}: D \rightarrow D$ such that $T_{n \sharp} \nu=\nu_{n}$.

To compare $u \in L^{1}(\nu)$ and $u_{n} \in L^{1}\left(\nu_{n}\right)$ we compare $u_{n} \circ T_{n}$ and u in $L^{1}(\nu)$.

A different partition:

A different partition:

Topology

Consider domain D and $V_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ random i.i.d points.

- Let T_{n} be a transportation (i.e. measure preserving) map from ν to ν_{n}

Topology

For $u \in L^{1}(\nu)$ and $u_{n} \in L^{1}\left(\nu_{n}\right)$

$$
d\left((\nu, u),\left(\nu_{n}, u_{n}\right)\right)=\inf _{T_{n \sharp \nu=\nu_{n}}} \int_{D}\left|u_{n}\left(T_{n}(x)\right)-u(x)\right|+\left|T_{n}(x)-x\right| \rho(x) d x
$$

where

$$
T_{n \sharp \nu}=\nu_{n}
$$

means that for all $A \subset D$ Borel,

$$
\nu\left(T_{n}^{-1}(A)\right)=\nu_{n}(A)
$$

$T L^{1}$ Space

Definition

$$
\begin{aligned}
T L^{1} & =\left\{(\nu, f): \nu \in \mathcal{P}(D), f \in L^{1}(\nu)\right\} \\
d_{T L^{1}}((\nu, f),(\sigma, g)) & \left.=\inf _{\pi \in \Pi(\nu, \sigma)} \int_{D \times D}|y-x|+\mid g(y)-f(x)\right) \mid d \pi(x, y) .
\end{aligned}
$$

where

$$
\Pi(\nu, \sigma)=\{\pi \in \mathcal{P}(D \times D): \pi(A \times D)=\nu(A), \pi(D \times A)=\sigma(A)\} .
$$

If $T_{\sharp} \nu=\sigma$ then $\pi=(I \times T)_{\sharp} \nu \in \Pi(\nu, \sigma)$ and the integral becomes

$$
\int|T(x)-x|+|g(T(x))-f(x)| d \nu(x)
$$

Lemma

($T L^{1}, d_{T L^{1}}$) is a metric space.

$T L^{1}$ convergence

- $\left(\nu, f_{n}\right) \xrightarrow{T L^{1}}(\nu, f)$ iff $f_{n} \xrightarrow{L^{1}(\nu)} f$
- $\left(\nu_{n}, f_{n}\right) \xrightarrow{T L^{1}}(\nu, f)$ iff the measures $\left(I \times f_{n}\right)_{\sharp \nu_{n}}$ weakly converge to $(I \times f)_{\sharp} \nu$. That is if graphs, considered as measures converge weakly.
- The space $T L^{1}$ is not complete. Its completion are the probability measures on the product space $D \times \mathbb{R}$.

If $\left(\nu_{n}, f_{n}\right) \xrightarrow{T L^{1}}(\nu, f)$ then there exists a sequence of transportation plans ν_{n} such that

$$
\begin{equation*}
\int_{D \times D}|x-y| d \pi_{n}(x, y) \longrightarrow 0 \quad \text { as } n \rightarrow \infty \tag{1}
\end{equation*}
$$

We call a sequence of transportation plans $\pi_{n} \in \Pi\left(\nu_{n}, \nu\right)$ stagnating if it satisfies (1).

Stagnating sequence: $\int_{D \times D}|x-y| d \pi_{n}(x, y) \longrightarrow 0$
TFAE:
(1) $\left(\nu_{n}, f_{n}\right) \xrightarrow{T L^{1}}(\nu, f)$ as $n \rightarrow \infty$.
(2) $\nu_{n} \rightharpoonup \nu$ and there exists a stagnating sequence of transportation plans $\left\{\pi_{n}\right\}_{n \in \mathbb{N}}$ for which
(2)

$$
\iint_{D \times D}\left|f(x)-f_{n}(y)\right| d \pi_{n}(x, y) \rightarrow 0, \text { as } n \rightarrow \infty
$$

(3) $\nu_{n} \rightharpoonup \nu$ and for every stagnating sequence of transportation plans π_{n}, (2) holds.

Formally $T L^{1}(D)$ is a fiber bundle over $\mathcal{P}(D)$.

Consistency

$$
G T V_{n, \varepsilon_{n}}\left(u^{n}\right)=\frac{1}{\varepsilon_{n} n^{2}} \sum_{i, j} \eta_{\varepsilon_{n}}\left(X_{i}-X_{j}\right)\left|u_{i}^{n}-u_{j}^{n}\right|
$$

「-convergence of Total Variation (García Trillos and S.)

Let $\left\{\varepsilon_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of positive numbers converging to 0 satisfying

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{(\log n)^{3 / 4}}{n^{1 / 2}} \frac{1}{\varepsilon_{n}}=0 \text { if } d=2, \\
& \lim _{n \rightarrow \infty} \frac{(\log n)^{1 / d}}{n^{1 / d}} \frac{1}{\varepsilon_{n}}=0 \text { if } d \geq 3 .
\end{aligned}
$$

Then, $G T V_{n, \varepsilon_{n}} \Gamma$-converge to $\sigma T V\left(\cdot, \rho^{2}\right)$ as $n \rightarrow \infty$ in the $T L^{1}$ sense, where σ depends explicitly on η.

Consistency

「-convergence of Perimeter

The conclusions hold when all of the functionals are restricted to characteristic functions of sets. That is, the graph perimeters Γ-converge to the continuum perimeter.

Compactness

With the same conditions on ε_{n} as before, if

$$
\sup _{n \in \mathbb{N}}\left\|u_{n}\right\|_{L^{1}\left(D, \nu_{n}\right)}<\infty
$$

and

$$
\sup _{n \in \mathbb{N}} G T V_{n, \varepsilon_{n}}\left(u_{n}\right)<\infty,
$$

then $\left\{u_{n}\right\}_{n \in N}$ is $T L^{1}$-precompact.

Consistency of Cheeger Cuts

Recall:

$$
\begin{aligned}
& G C_{n, \varepsilon_{n}}\left(u^{n}\right)=\frac{1}{n} \frac{1}{\varepsilon_{n}} \sum_{i, j} \eta_{\varepsilon_{n}}\left(X_{i}-X_{j}\right)\left|u_{i}^{n}-u_{j}^{n}\right| \\
& \min _{c \in \mathbb{R}} \sum_{i}\left|u_{i}^{n}-c\right| \\
& C(u)=\frac{\sigma T V\left(u, \rho^{2}\right)}{\min _{c \in \mathbb{R}} \int_{D}|u(x)-c| \rho(x) d x}
\end{aligned}
$$

Consistency of Cheeger Cuts

Recall:

$$
\begin{aligned}
& G C_{n, \varepsilon_{n}}\left(u^{n}\right)=\frac{1}{n} \frac{1}{\varepsilon_{n}} \sum_{i, j} \eta_{\varepsilon_{n}}\left(X_{i}-X_{j}\right)\left|u_{i}^{n}-u_{j}^{n}\right| \\
& \min _{c \in \mathbb{R}} \sum_{i}\left|u_{i}^{n}-c\right| \\
& C(u)=\frac{\sigma T V\left(u, \rho^{2}\right)}{\min _{c \in \mathbb{R}} \int_{D}|u(x)-c| \rho(x) d x}
\end{aligned}
$$

Consistency of Cheeger Cuts (von Brecht, García Trillos, Laurent, S.)

For the same conditions on ε_{n} as before, with probability one:

$$
G C_{n, \varepsilon_{n}} \xrightarrow{\Gamma} C \quad \text { w.r.t. } T L^{1} \text { metric. }
$$

Moreover, for any sequence of sets $E_{n} \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$ of almost minimizers of the Cheeger energy, every subsequence has a convergent subsequence (in the $T L^{1}$ sense) to a minimizer of the Cheeger energy on the domain D.

Hint about the proof

Assume that $u_{n} \xrightarrow{T L^{1}} u$ as $n \rightarrow \infty$.
There exists $T_{n \sharp} \nu=\nu_{n}$ stagnating $\left(\int\left|x-T_{n}(x)\right| d \nu(x) \rightarrow 0\right)$.

$$
\begin{aligned}
& \left.G T V_{n, \varepsilon_{n}}\left(u^{n}\right)=\frac{1}{\varepsilon_{n}} \int_{D \times D} \eta_{\varepsilon_{n}}(\tilde{x}-\tilde{y})\right)\left|u_{n}(\tilde{x})-u_{n}(\tilde{y})\right| d \nu_{n}(\tilde{x}) d \nu_{n}(\tilde{y}) \\
& \quad=\frac{1}{\varepsilon_{n}} \int_{D \times D} \eta_{\varepsilon_{n}}\left(T_{n}(x)-T_{n}(y)\right)\left|u_{n} \circ T_{n}(x)-u_{n} \circ T_{n}(y)\right| \rho(x) \rho(y) d x d y
\end{aligned}
$$

Define $T V_{\varepsilon}(u ; \rho):=\frac{1}{\varepsilon} \int_{D \times D} \eta_{\varepsilon}(x-y)|u(x)-u(y)| \rho(x) \rho(y) d x d y$.

- $T V_{\varepsilon} \stackrel{\Gamma}{\longrightarrow} T V\left(\cdot, \rho^{2}\right)$ wrt $L^{1}\left(\nu_{0}\right)$ metric.
(Alberti-Bellettini, Chambolle-Giacomini-Lussardi, Savin-Valdinocci, Ponce)
- If $\left|T_{n}(x)-x\right| \ll \varepsilon_{n}$ then one may be able to compare $G T V_{n, \varepsilon_{n}}\left(u^{n}\right)$ and $T V_{\varepsilon}\left(u_{n} \circ T_{n} ; \rho\right)$.

Scaling for ε_{n}

Optimal matchings in dimension d \geq 3: Ajtai-Komlós-Tusnády (1983), Yukich and Shor (1991), Garcia Trillos and S. (2014)

Theorem

There are constants $c>0$ and $C>0$ (only depending on d) such that with probability one we can find a sequence of transportation maps $\left\{T_{n}\right\}_{n \in \mathbb{N}}$ from ν_{0} to $\nu_{n}\left(T_{n \#} \nu_{0}=\nu_{n}\right)$ and such that:

$$
c \leq \liminf _{n \rightarrow \infty} \frac{n^{1 / d}\left\|l d-T_{n}\right\|_{\infty}}{(\log n)^{1 / d}} \leq \limsup _{n \rightarrow \infty} \frac{n^{1 / d}\left\|l d-T_{n}\right\|_{\infty}}{(\log n)^{1 / d}} \leq C .
$$

Scaling for ε_{n}

Optimal matchings in dimension d = 2: Leighton and Shor (1986), new proof by Talagrand (2005), Garcia Trillos and S. (2014)

Theorem

There are constants $c>0$ and $C>0$ such that with probability one we can find a sequence of transportation maps $\left\{T_{n}\right\}_{n \in \mathbb{N}}$ from ν_{0} to ν_{n} ($T_{n \#} \nu_{0}=\nu_{n}$) and such that:
(3) $\quad c \leq \liminf _{n \rightarrow \infty} \frac{n^{1 / 2}\left\|I d-T_{n}\right\|_{\infty}}{(\log n)^{3 / 4}} \leq \limsup _{n \rightarrow \infty} \frac{n^{1 / 2}\left\|I d-T_{n}\right\|_{\infty}}{(\log n)^{3 / 4}} \leq C$.

- We require

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{(\log n)^{3 / 4}}{n^{1 / 2}} \frac{1}{\varepsilon_{n}}=0 \text { if } d=2 \\
& \lim _{n \rightarrow \infty} \frac{(\log n)^{1 / d}}{n^{1 / d}} \frac{1}{\varepsilon_{n}}=0 \text { if } d \geq 3
\end{aligned}
$$

- Note that for $d \geq 3$ this means that typical degree $\gg \log (n)$.
- Does convergence hold if fewer than $\log (n)$ neighbors are connected to?
- We require

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{(\log n)^{3 / 4}}{n^{1 / 2}} \frac{1}{\varepsilon_{n}}=0 \text { if } d=2 \\
& \lim _{n \rightarrow \infty} \frac{(\log n)^{1 / d}}{n^{1 / d}} \frac{1}{\varepsilon_{n}}=0 \text { if } d \geq 3
\end{aligned}
$$

- Note that for $d \geq 3$ this means that typical degree $\gg \log (n)$.
- Does convergence hold if fewer than $\log (n)$ neighbors are connected to?
No. There exists $c>0$ such that $\varepsilon_{n}<c \frac{\log (n)^{1 / d}}{n^{1 / d}}$ then with probability one the random geometric graph is asymptotically disconnected.
Penrose (1999); Gupta and Kumar (1999); Goel,Rai and
Krishnamachari (2004).
This implies that for large enough $n, \min G C_{n, \varepsilon_{n}}=0$. While $\inf C>0$.
So for $d \geq 3$ the condition is optimal in terms of scaling.

