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Clustering

Partition the data into meaningful groups.
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Graph-Based Clustering

Determine a similarity measure between images

Construct a graph based on the similarity measure.
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Graph-Based Clustering

Determine a similarity measure between images

Construct a graph based on the similarity measure.

Partition the graph
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From point clouds to graphs

Let V = {X1, . . . ,Xn} be a point cloud in Rd :

Xi

Xj

Connect nearby vertices: Edge weights Wi,j .

.
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From point clouds to graphs

Let V = {X1, . . . ,Xn} be a point cloud in Rd :

Xi

Xj

Wi,j

Connect nearby vertices: Edge weights Wi,j .
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Graph cut

Let V = {X1, . . . ,Xn} be a point cloud in Rd :

Xi

Xj

Wi,j
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A Ac

Connect nearby vertices: Edge weights Wi,j

Graph Cut: A ⊂ V .

Cut(A,Ac) =
∑
i∈A

∑
j∈Ac

Wi,j .
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Let V = {X1, . . . ,Xn} be a point cloud in Rd :

hhhhhh
hhhhhh
hhhhhh
hhhhhh

Connect nearby vertices: Edge weights Wi,j

Minimize: A ⊂ V .

Cut(A,Ac) =
∑
i∈A

∑
j∈Ac

Wi,j .
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Let V = {X1, . . . ,Xn} be a point cloud in Rd :
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A Ac

Graph Cut: A ⊂ V .

Cut(A,Ac) =
∑
i∈A

∑
j∈Ac

Wi,j .

Cheeger Cut: Minimize

GC(A) =
Cut(A,Ac)

min{|A|, |Ac|}
.

.
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Graph Constructions

proximity based graphs

Wi,j = η(Xi − Xj)

η

L

η

L

kNN graphs: Connect each vertex with its k nearest neighbors

.
11 / 49



Task

Minimize GC(A) =

∑
i∈A
∑

j∈Ac Wi,j

min{|A|, |Ac|}

.
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Task

Minimize GC(A) =

∑
i∈A
∑

j∈Ac Wi,j

min{|A|, |Ac|}

Algorithm of Bresson, Laurent, Uminsky and von Brecht (2013).
.
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Graph Total Variation

Graph total variation

For a function u : V → R

GTVn(u) =
1
n2

∑
i,j

Wi,j |ui − uj |

where ui = u(Xi).

Note that for a set of vertices A ⊂ V

GTVn(χA) =
1
n2 Cut(A,Ac)

where χA is the characteristic function of A

χA(Xi) =

{
1 if xi ∈ A

0 otherwise.

.
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Relaxed Problem

GTVn(u) =
1
n2

∑
i,j

Wi,j |ui − uj |.

Balance term
Bn(u) =

1
n

min
c∈R

∑
i

|ui − c|

Bn(χA) =
1
n

min{|A|, |Ac|}.Note that

Relaxed problem

Minimize GCn(u) =
GTVn(u)

Bn(u)

Theorem
Relaxation is exact: There exists a set of vertices An such that un = χAn

minimizes GCn.
.
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Ground Truth Assumption

Assume points X1,X2, . . . , are drawn i.i.d out of measure dν = ρdx

.
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Total variation in continuum setting
dν = ρdx probability measure, supp(ν) = D, 0 < λ ≤ ρ ≤ 1

λ on D.

Weighted relative perimeter

Given A ⊂ D P(A; D, ρ2) =

∫
D∩∂A

ρ2dSd−1

Weighted TV

TV (u, ρ2) =

∫
D
|∇u|ρ2dx

.
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Total variation in continuum setting
dν = ρdx probability measure, supp(ν) = D, 0 < λ ≤ ρ ≤ 1

λ on D.

Weighted relative perimeter

Given A ⊂ D P(A; D, ρ2) =

∫
D∩∂A

ρ2dSd−1 = TV (χA, ρ
2)

Weighted TV

TV (u, ρ2) = sup
{∫

D
u div(φ)dx : |φ| ≤ ρ2 , φ ∈ C∞c (D,Rd )

}
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Clustering in continuum setting
ν probability measure with compact support supp(ν) = D.
ν has continuous on D density ρ and 0 < λ ≤ ρ ≤ 1

λ on D.

Weighted TV

TV (u, ρ2) = sup
{∫

D
u div(φ)dx : |φ| ≤ ρ2 , φ ∈ C∞c (D,Rd )

}
Weighted relative perimeter

Given A ⊂ D P(A; D, ρ2) = TV (χA, ρ
2)

Balance term

B(A) = min{|A|, 1− |A|} where |A| = ν(A).

Weighted Cheeger Cut: Minimize

C(A) =
P(A; D, ρ2)

B(A)

.
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Relaxation in continuum setting

ν probability measure with compact support supp(ν) = D.
ν has continuous on D density ρ and 0 < λ ≤ ρ ≤ 1

λ on D.

Weighted TV

TV (u, ρ2) = sup
{∫

D
u div(φ)dx : |φ| ≤ ρ2 , φ ∈ C∞c (D,Rd )

}

Balance term

B(u) = min
c∈R

∫
D
|u(x)− c|ρ(x)dx

Minimize

C(u) =
TV (u, ρ2)

B(u)

.
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Clustering in continuum setting

Minimize

C(u) =
TV (u, ρ2)

B(u)

.
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Consistency of clustering

Do the minimizers of

GCn(un) =
1
n

∑
i,j Wi,j |ui − uj |

minc∈R
∑

i |ui − c|

converge as the number of data points n→∞ to a minimizer of

C(u) =
TV (u, ρ2)

minc∈R
∫

D |u(x)− c|ρ(x)dx
?

.
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Localizing the kernel as n→∞

ηε(z) =
1
εd η

(z
ε

)
.

Consistency of clustering II

Do the minimizers of

GCn,εn (un) =
1
n

1
εn

∑
i,j ηεn (Xi − Xj) |un

i − un
j |

minc∈R
∑

i |un
i − c|

converge as the number of data points n→∞ to a minimizer of

C(u) =
TV (u, ρ2)

minc∈R
∫

D |u(x)− c|ρ(x)dx
?

Question 1: For what scaling of ε(n) can this hold?
Question 2: What is the topology for which un −→ u?

.
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n = 120, ε = 0.15 n = 120, ε = 0.20

n = 120, ε = 0.30 n = 120, ε = 0.40

.
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n = 500, ε = 0.14

n = 500, ε = 0.2
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What was known

Consistency results in machine learning

Arias Castro, Pelletier, and Pudlo 2012 - partial results on the
problem

Pollard 1981 - k -means

Hartigan 1981 - single linkage

Belkin and Niyogi 2006 - Laplacian eigenmaps

von Luxburg, Belkin, and Bousquet 2004, 2008 - spectral embedding

.
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What was known

Consistency results in machine learning

Arias Castro, Pelletier, and Pudlo 2012 - partial results on the
problem

Pollard 1981 - k -means

Hartigan 1981 - single linkage

Belkin and Niyogi 2006 - Laplacian eigenmaps

von Luxburg, Belkin, and Bousquet 2004, 2008 - spectral embedding

Calculus of Variations
Discrete to continuum for functionals on grids: Braides 2010, Braides and
Yip 2012, Chambolle, Giacomini and Lussardi 2012, Gobbino and Mora
2001, Van Gennip and Bertozzi 2014
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Γ-Convergence

(Y , dY ) - metric space, Fn : Y → [0,∞]

Definition

The sequence {Fn}n∈N Γ-converges ( w.r.t dY ) to F : Y → [0,∞] if:

Liminf inequality: For every y ∈ Y and whenever yn → y

lim inf
n→∞

Fn(yn) ≥ F (y),

Limsup inequality: For every y ∈ Y there exists yn → y such that

lim sup
n→∞

Fn(yn) ≤ F (y).

Definition (Compactness property)

{Fn}n∈N satisfies the compactness property if

{yn}n∈N bounded and
{Fn(yn)}n∈N bounded

}
=⇒ {yn}n∈N has convergent subsequence

.
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Proposition: Convergence of minimizers

Γ-convergence and Compactness imply: If yn is a minimizer of Fn and
{yn}n∈N is bounded in Y then along a subsequence

yn → y as n→∞

and
y is a minimizer of F .

In particular, if F has a unique minimizer, then a sequence {yn}n∈N
converges to the unique minimizer of F .

.
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Consistency of clustering III

Show that

GCn,εn (un) =
1
n

1
εn

∑
i,j ηεn (Xi − Xj) |un

i − un
j |

minc∈R
∑

i |un
i − c|

Γ-converge as the number of data points n→∞, and εn → 0 at certain
rate to

F (u) =
σTV (u, ρ2)

minc∈R
∫

D |u(x)− c|ρ(x)dx

and show that compactness property holds.

Questions
1 For what scaling of ε(n) can this hold?
2 What is the topology for un −→ u?

.
28 / 49



Consistency of graph total variation

Show that

GTVn,εn (un) =
1

εn n2

∑
i,j

ηεn (Xi − Xj) |un
i − un

j |

Γ-converge to σTV (u, ρ2), as the number of data points n→∞, and
εn → 0 at certain rate and show that compactness property holds.

Questions
1 For what scaling of ε(n) can this hold?
2 What is the topology for un −→ u?

.
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Topology

Consider domain D and Vn = {X1, . . . ,Xn} random i.i.d points.

How to compare un : Vn → R and u : D → R in a way consistent with
L1 topology?

Note that u ∈ L1(ν) and un ∈ L1(νn), where νn = 1
n

∑n
i=1 δXi .

.
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Topology

Consider domain D and Vn = {X1, . . . ,Xn} random i.i.d points.

How to compare un ∈ L1(νn) and u ∈ L1(D) in a way consistent with
L1 topology?

.
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An idea: Divide the domain D into n sets of the same ν measure and to
each piece associate a point Xi . That is, consider a map Tn : D → D such
that T#ν = νn.

.
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Divide the domain D into n pieces and to each piece associate a point Xi .
That is, consider a map Tn : D → D such that Tn]ν = νn.

To compare u ∈ L1(ν) and un ∈ L1(νn) we compare un ◦ Tn and u in L1(ν).

.
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A different partition:

.
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A different partition:

.
34 / 49



Topology

Consider domain D and Vn = {X1, . . . ,Xn} random i.i.d points.

un ◦ Tn

u

ν
νn

Let Tn be a transportation (i.e. measure preserving) map from ν to νn

.
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Topology

For u ∈ L1(ν) and un ∈ L1(νn)

d((ν, u), (νn, un)) = inf
Tn ]ν=νn

∫
D
|un(Tn(x))− u(x)|+ |Tn(x)− x |ρ(x)dx

where
Tn ]ν = νn

means that for all A ⊂ D Borel,

ν(T−1
n (A)) = νn(A).

.
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TL1 Space

Definition

TL1 = {(ν, f ) : ν ∈ P(D), f ∈ L1(ν)}

dTL1((ν, f ), (σ, g)) = inf
π∈Π(ν,σ)

∫
D×D
|y − x |+ |g(y)− f (x))|dπ(x , y).

where

Π(ν, σ) = {π ∈ P(D × D) : π(A× D) = ν(A), π(D × A) = σ(A)}.

If T]ν = σ then π = (I × T )]ν ∈ Π(ν, σ) and the integral becomes∫
|T (x)− x |+ |g(T (x))− f (x)|dν(x)

Lemma

(TL1, dTL1) is a metric space.

.
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TL1 convergence

(ν, fn)
TL1

−→ (ν, f ) iff fn
L1(ν)−→ f

(νn, fn)
TL1

−→ (ν, f ) iff the measures (I × fn)]νn weakly converge to
(I × f )]ν. That is if graphs, considered as measures converge weakly.

The space TL1 is not complete. Its completion are the probability
measures on the product space D × R.

If (νn, fn)
TL1

−→ (ν, f ) then there exists a sequence of transportation plans νn

such that

(1)
∫

D×D
|x − y |dπn(x , y) −→ 0 as n→∞.

We call a sequence of transportation plans πn ∈ Π(νn, ν) stagnating if it
satisfies (1).

.
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Stagnating sequence:
∫

D×D |x − y |dπn(x , y) −→ 0

TFAE:
1 (νn, fn)

TL1

−→ (ν, f ) as n→∞.
2 νn ⇀ ν and there exists a stagnating sequence of transportation

plans {πn}n∈N for which

(2)
∫∫

D×D
|f (x)− fn(y)| dπn(x , y)→ 0, as n→∞.

3 νn ⇀ ν and for every stagnating sequence of transportation plans
πn, (2) holds.

.
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Formally TL1(D) is a fiber bundle over P(D).

.
40 / 49



.
41 / 49



Consistency

GTVn,εn (un) =
1

εn n2

∑
i,j

ηεn (Xi − Xj) |un
i − un

j |

Γ-convergence of Total Variation (Garcı́a Trillos and S.)

Let {εn}n∈N be a sequence of positive numbers converging to 0 satisfying

lim
n→∞

(log n)3/4

n1/2

1
εn

= 0 if d = 2,

lim
n→∞

(log n)1/d

n1/d

1
εn

= 0 if d ≥ 3.

Then, GTVn,εn Γ-converge to σTV ( · , ρ2) as n→∞ in the TL1 sense,
where σ depends explicitly on η.

.
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Consistency

Γ-convergence of Perimeter

The conclusions hold when all of the functionals are restricted to
characteristic functions of sets. That is, the graph perimeters Γ-converge
to the continuum perimeter.

Compactness

With the same conditions on εn as before, if

sup
n∈N
‖un‖L1(D,νn) <∞,

and
sup
n∈N

GTVn,εn (un) <∞,

then {un}n∈N is TL1-precompact.

.
43 / 49



Consistency of Cheeger Cuts

Recall:

GCn,εn (un) =
1
n

1
εn

∑
i,j ηεn (Xi − Xj) |un

i − un
j |

minc∈R
∑

i |un
i − c|

C(u) =
σTV (u, ρ2)

minc∈R
∫

D |u(x)− c|ρ(x)dx

.
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Consistency of Cheeger Cuts

Recall:

GCn,εn (un) =
1
n

1
εn

∑
i,j ηεn (Xi − Xj) |un

i − un
j |

minc∈R
∑

i |un
i − c|

C(u) =
σTV (u, ρ2)

minc∈R
∫

D |u(x)− c|ρ(x)dx

Consistency of Cheeger Cuts (von Brecht, Garcı́a Trillos, Laurent, S.)

For the same conditions on εn as before, with probability one:

GCn,εn

Γ−→ C w.r.t. TL1 metric.

Moreover, for any sequence of sets En ⊆ {X1, . . . ,Xn} of almost
minimizers of the Cheeger energy, every subsequence has a convergent
subsequence (in the TL1 sense ) to a minimizer of the Cheeger energy on
the domain D.

.
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Hint about the proof

Assume that un
TL1

−→ u as n→∞.
There exists Tn]ν = νn stagnating (

∫
|x − Tn(x)|dν(x)→ 0 ).

GTVn,εn (un) =
1
εn

∫
D×D

ηεn (x̃ − ỹ)) |un(x̃)− un(ỹ)| dνn(x̃)dνn(ỹ)

=
1
εn

∫
D×D

ηεn (Tn(x)− Tn(y)) |un ◦ Tn(x)− un ◦ Tn(y)| ρ(x)ρ(y)dxdy

Define TVε(u; ρ) :=
1
ε

∫
D×D

ηε(x − y)|u(x)− u(y)|ρ(x)ρ(y)dxdy .

TVε
Γ−→ TV ( · , ρ2) wrt L1(ν0) metric.

(Alberti-Bellettini, Chambolle-Giacomini-Lussardi, Savin-Valdinocci,
Ponce)

If |Tn(x)− x | � εn then one may be able to compare GTVn,εn (un)
and TVε(un ◦ Tn; ρ).

.
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Scaling for εn

Optimal matchings in dimension d ≥ 3: Ajtai-Komlós-Tusnády (1983), Yukich and
Shor (1991), Garcia Trillos and S. (2014)

Theorem
There are constants c > 0 and C > 0 ( only depending on d) such that
with probability one we can find a sequence of transportation maps
{Tn}n∈N from ν0 to νn (Tn#ν0 = νn) and such that:

c ≤ lim inf
n→∞

n1/d‖Id − Tn‖∞
(log n)1/d

≤ lim sup
n→∞

n1/d‖Id − Tn‖∞
(log n)1/d

≤ C.

.
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Scaling for εn

Optimal matchings in dimension d = 2: Leighton and Shor (1986), new proof by
Talagrand (2005), Garcia Trillos and S. (2014)

Theorem
There are constants c > 0 and C > 0 such that with probability one we
can find a sequence of transportation maps {Tn}n∈N from ν0 to νn

(Tn#ν0 = νn) and such that:

(3) c ≤ lim inf
n→∞

n1/2‖Id − Tn‖∞
(log n)3/4

≤ lim sup
n→∞

n1/2‖Id − Tn‖∞
(log n)3/4

≤ C.

.
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Comment of εn

We require

lim
n→∞

(log n)3/4

n1/2

1
εn

= 0 if d = 2,

lim
n→∞

(log n)1/d

n1/d

1
εn

= 0 if d ≥ 3.

Note that for d ≥ 3 this means that typical degree� log(n).

Does convergence hold if fewer than log(n) neighbors are connected
to?

.
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Comment of εn

We require

lim
n→∞

(log n)3/4

n1/2

1
εn

= 0 if d = 2,

lim
n→∞

(log n)1/d

n1/d

1
εn

= 0 if d ≥ 3.

Note that for d ≥ 3 this means that typical degree� log(n).
Does convergence hold if fewer than log(n) neighbors are connected
to?

No. There exists c > 0 such that εn < c log(n)1/d

n1/d then with probability
one the random geometric graph is asymptotically disconnected.
Penrose (1999); Gupta and Kumar (1999); Goel,Rai and
Krishnamachari (2004).
This implies that for large enough n, min GCn,εn = 0. While inf C > 0.

So for d ≥ 3 the condition is optimal in terms of scaling.
.
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