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@ Partition the data into meaningful groups.
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Graph-Based Clustering
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@ Determine a similarity measure between images
@ Construct a graph based on the similarity measure.

4/ 49



Graph-Based Clustering
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@ Determine a similarity measure between images
@ Construct a graph based on the similarity measure.
@ Partition the graph
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From point clouds to graphs

@ Let V= {Xy,...,X,} be a point cloud in R
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From point clouds to graphs

@ Let V= {Xy,...,X,} be a point cloud in R

@ Connect nearby vertices: Edge weights W, ;.
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From point clouds to graphs

@ Let V= {Xy,...,Xs} be a point cloud in RY:

@ Connect nearby vertices: Edge weights W, ;.
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Graph cut

@ Let V= {Xy,...,X,} be apoint cloud in RY:

Xi

@ Connect nearby vertices: Edge weights W

@ Graph Cut: AC V.
Cut(A, A% =" W,
i€A jeAC

8/ 49



@ Let V= {Xy,...,X,} be a point cloud in R

@ Connect nearby vertices: Edge weights W
@ Minimize: A C V.

Cut(A,A) =) "> W,

i€A jeAC
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@ Let V= {Xy,...,X,} be a point cloud in RY:

@ Graph Cut: AC V.

Cut(A,A) =) "> W,

i€A jeAC

@ Cheeger Cut: Minimize

GC(A) = Cut(A, A°)

min{|A], |A°[}
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Graph Constructions

@ proximity based graphs

Wiy =n(X - X)

L L

@ kNN graphs: Connect each vertex with its k nearest neighbors
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Task

Minimize

ZieA Z‘GAC Wij
A) = : :
GOMA) = ~min{lAl, [47]}
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Task

' Wi
Minimize GC(A) = zr:r:ier:\{IZAfC‘\cl}l’j

R
o \v\.\?/'\

NI

Algorithm of Bresson, Laurent, Uminsky and von Brecht (2013).
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Graph Total Variation

Graph total variation
For a functionu : V — R

1
GTVn(U) = ? Z VV,'J |U,' —Uj
i

where u; = u(X;).

Note that for a set of vertices A C V
1
GTV,h(xa) = ?Cut(A,AC)
where x4 is the characteristic function of A

1 ifx;eA
0 otherwise.

XA(Xi) = {
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Relaxed Problem

GTVn(u) = ZW,,,

Balance term

Bn(u) = — mlnz lui — c|

1
Note that Bn(xa) = — min{|A], |A|}.
Relaxed problem

. _ GTVp(u)
Minimize GCp(u) = By (u) |
Theorem

Relaxation is exact: There exists a set of vertices A, such that u, = xa,
minimizes GC,.
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Assume points Xi, Xo, .. ., are drawn i.i.d out of measure dv = pdx
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Total variation in continuum setting

@ dv = pdx probability measure, supp(v) = D,0 <A < p < 1 on D.
Weighted relative perimeter

Given Ac D P(A; D, p?) —/ p?dSy_1
DNOA )

Weighted TV

TV(u, p?) = /DyvU|p2dx
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Total variation in continuum setting

@ dv = pdx probability measure, supp(v) = D,0 <A < p < 1 on D.
Weighted relative perimeter

Given AC D P(A; D, o) —/ p2dSy—_1 = TV(xa, )
DNoA )

Weighted TV
TV(u, p?) = sup{/ udiv(g)dx : |¢| < p? , ¢ € CX(D, Rd)}
D
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Clustering in continuum setting

@ v probability measure with compact support supp(v) = D.
@ v has continuous on D density pand 0 < A < p < 1 on D.

Weighted TV

TV(u, ) =sup { [ udv()ax : o] <42, 6 € CX(0.R) ]
D

Weighted relative perimeter
Given AC D P(A; D, p?) = TV(xa, p%)

Balance term

B(A) = min{|A|,1 — |A|} where |A| = v(A).

Weighted Cheeger Cut: Minimize
P(A; D, p?)

D =""5@)
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Relaxation in continuum setting

@ v probability measure with compact support supp(v) = D.
@ v has continuous on D density pand 0 < A < p < 1 on D.

Weighted TV

V() =sup { [ udv(@)ar : o] <2 6 € CX(0.R) ]
D

Balance term

—mm/ lu(x) — c|p(x

ceR

Minimize
C(u) = TVEEEZ;) )
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Clustering in continuum setting

Minimize
_ TV(u, p?)
~ B(u)

C(u)
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Consistency of clustering
Do the minimizers of

1 >0 Wij
n mingegr Y ; |Ui — |

Ui — yj|

GCn(up) =

converge as the number of data points n — oo to a minimizer of

_ V(u,2) )
~ mineer [p [u(x) — clp(x)dx

C(u)




Localizing the kernel as n — oo

Consistency of clustering Il
Do the minimizers of

GCp,(U") = 1 Eln Zi,j Nen(Xi — Xi) | — u/p|
n,en n minCGR Zf |Uln — C|

converge as the number of data points n — oo to a minimizer of

_ V(u,2) )
" minger [, [u(x) — c|p(x)dx

C(u)

Question 1: For what scaling of ¢(n) can this hold?
Question 2: What is the topology for which u" — u?
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n=120,c =030 n=120,¢ = 0.40
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n=500,e =0.14

n=500,¢ = 0.2
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What was known

Consistency results in machine learning
@ Arias Castro, Pelletier, and Pudlo 2012 - partial results on the
problem
@ Pollard 1981 - k -means
@ Hartigan 1981 - single linkage
@ Belkin and Niyogi 2006 - Laplacian eigenmaps
@ von Luxburg, Belkin, and Bousquet 2004, 2008 - spectral embedding
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What was known

Consistency results in machine learning
@ Arias Castro, Pelletier, and Pudlo 2012 - partial results on the
problem
@ Pollard 1981 - k -means
@ Hartigan 1981 - single linkage
@ Belkin and Niyogi 2006 - Laplacian eigenmaps
@ von Luxburg, Belkin, and Bousquet 2004, 2008 - spectral embedding

Calculus of Variations

Discrete to continuum for functionals on grids: Braides 2010, Braides and
Yip 2012, Chambolle, Giacomini and Lussardi 2012, Gobbino and Mora
2001, Van Gennip and Bertozzi 2014
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'-Convergence

(Y, dy) - metric space, F,: Y — [0, o]

Definition

The sequence {Fp} . I-converges (w.rtdy )to F: Y — [0, o] if:
Liminf inequality: For every y € Y and whenever y, — y

liminf Fo(yn) > F(y),
Limsup inequality: For every y € Y there exists y, — y such that

limsup Fr(yn) < F(y).

n—oo

Definition (Compactness property)
{Fn}ney satisfies the compactness property if

{¥n} pey bounded and
{Fn(¥n)} pey bounded

} = {¥n} ,en has convergent subsequence

>
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Proposition: Convergence of minimizers

I'-convergence and Compactness imply: If y, is a minimizer of F, and
{¥n}nen is bounded in Y then along a subsequence

Yo— Yy asn-— oo

and
y is a minimizer of F.

In particular, if F has a unique minimizer, then a sequence {yn} ,cn
converges to the unique minimizer of F.
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Consistency of clustering Il
Show that

p 1 i (X = X) [0 — ]
GCn,an(u ) = — ’. -
i minger Y ; [uf! — ¢|
-converge as the number of data points n — oo, and €, — 0 at certain
rate to

B oTV(u, p?)
) = ek o [u(x) — clo(x)ox

and show that compactness property holds.

Questions
@ For what scaling of £(n) can this hold?
© What is the topology for u” — u?
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Consistency of graph total variation
Show that

GTVn&n - n2 Zn&‘n )(_/ |U - uj ’
n

F-converge to o TV(u, p?), as the number of data points n — oo, and
ep — 0 at certain rate and show that compactness property holds.

Questions
@ For what scaling of £(n) can this hold?
@ What is the topology for u” — u?
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Topology

Consider domain D and V,, = {Xi, ..., X,} random i.i.d points.
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@ How to compare u, : V, - Rand u: D — R in a way consistent with
L' topology?

Note that u € L'(v) and up € L'(vp), where v, = 1377 6.

30/ 49



Topology

Consider domain D and V,, = {Xi, ..., X,} random i.i.d points.
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@ How to compare u, € L'(v,) and u € L'(D) in a way consistent with

L' topology?
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An idea: Divide the domain D into n sets of the same v measure and to
each piece associate a point X;. That is, consider a map T, : D — D such
that Txv = vy,
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Divide the domain D into n pieces and to each piece associate a point X.
That is, consider amap Tp : D — D such that Tpyv = vp.

To compare u € L'(v) and u, € L'(v,) we compare u,o T, and uin L'(v).
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A different partition:
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A different partition:
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Topology

Consider domain D and V,, = {Xi, ..., X5} random i.i.d points.

@ Let T, be a transportation (i.e. measure preserving) map from v to v,
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Topology

Foru € L'(v) and u, € L' (vp)

d((v, u), (vn, un)) = _ inf /Dlun(Tn(X))—U(X)I+\Tn(X)—X|p(X)dX

Thgv=vn

where
Thsv = vp

means that for all A C D Borel,
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TL' Space

Definition

TL' = {(v,f) : veP(D), fel'(v)}

dri((v,1),(0,9)) = _inf /XDIY—X! +19(y) = f(x))ldn(x; y)-

meM(v,o) Jp

where
MN(v,o0) ={m € P(Dx D) : w(Ax D) =v(A), (D x A) =oc(A)}.

If Ty = o then w = (I x T)yv € MN(v, o) and the integral becomes

/ IT(x) — x|+ [9(T(x)) — £(x)]dv(x)

Lemma
(TL', dy1) is a metric space. J
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TL' convergence

1’/
o (if)) 155 (v, f) iff £, W f

;
@ (vn,fn) SCN (v, f) iff the measures (/ x f,);vn weakly converge to
(I x f)yv. That is if graphs, considered as measures converge weakly.
@ The space TL' is not complete. lts completion are the probability
measures on the product space D x R.
1
If (vn, fn) I, (v, f) then there exists a sequence of transportation plans v/,
such that

(1) / |x — yldmn(x,y) — 0 as n— oc.
DxD

We call a sequence of transportation plans 7, € (v, v) stagnating if it
satisfies (1).
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Stagnating sequence: [, |x — y|dma(x,y) — 0
TFAE:
Q (vn, fn) T (v,f)as n — oo.

© v, — v and there exists a stagnating sequence of transportation
plans {mp} ,cx for which

(2) //DXD — fa(y)| dmn(x,y) — 0, as n — oc.

© v, — v and for every stagnating sequence of transportation plans
n, (2) holds.
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Formally TL'(D) is a fiber bundle over P(D).

L1(vn) L*(vo)

P(D)
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P(D)
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GTVnEn _5 n2 ann )(/ |U 7“‘

I"-convergence of Total Variation (Garcia Trillos and S.)
Let {en} o De a sequence of positive numbers converging to 0 satisfying

3/4
lim Ml:o ifd=2,
Nn—oo nl/2 €n

1/d
im (09T 5 g s,

n—oo nl/d g,

Then, GTV,,., T-convergeto o TV(-,p?)as n — oo inthe TL' sense,
where o depends explicitly on 7.
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I"-convergence of Perimeter

The conclusions hold when all of the functionals are restricted to
characteristic functions of sets. That is, the graph perimeters I'-converge
to the continuum perimeter.

Compactness
With the same conditions on ¢, as before, if

sup || Unl|1 (D) < o0,
neN

and

sup GTV ¢, (un) < o0,
neN

then {up}nen is TL'-precompact.
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Consistency of Cheeger Cuts

Recall: |
GCp,(Uu") = 1 en Zi,j Nen(Xi — Xj) lul' — ujn|
nen T n minger >, [ul — ¢
C(u) = o TV(u, p?)

~ minger [, [u(x) — c[p(x)dx
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Consistency of Cheeger Cuts

Recall: |
GCp.,(U") = 1% ZI,j Nen(Xi — Xi) U — an|
n,en n mince]R Z’. ‘Uln _ C‘
C(u) = oTV(u, p2)

~ minger [ [u(x) — c[p(x)dx

Consistency of Cheeger Cuts (von Brecht, Garcia Trillos, Laurent, S.)
For the same conditions on ¢, as before, with probability one:

GCh., T.c  wrt TL' metric.

Moreover, for any sequence of sets E, C {Xi, ..., X,} of almost
minimizers of the Cheeger energy, every subsequence has a convergent
subsequence (in the TL' sense ) to a minimizer of the Cheeger energy on
the domain D. |
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Hint about the proof

TL!
Assume that u, — v as n — oo.
There exists Tpyv = v, stagnating ( [ |x — Tp(x)|dv(x) — 0).

GT Ve, (u") = /D (R = ) |un(5) = ) () ()

. ey (Ta20) = To) 1 Ta(2) = ty o Toy) (X))l

€n JDx

, 1
Define TV.(u; p) := 5/0 Dna(x — y)u(x) — u(y)|p(x)p(y)dxdy.
X
o TV. -1 TV(-, p?) wrt L' (o) metric.
(Alberti-Bellettini, Chambolle-Giacomini-Lussardi, Savin-Valdinocci,
Ponce)
@ If |T,(x) — x| < e, then one may be able to compare GTV,, . ,(u")
and TV.(upo Tp; p).
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Scaling for ¢,

Optimal matchings in dimension d > 3: Ajtai-Komlds-Tusnady (1983), Yukich and
Shor (1991), Garcia Trillos and S. (2014)

Theorem

There are constants ¢ > 0 and C > 0 ( only depending on d) such that
with probability one we can find a sequence of transportation maps
{Tn} pen from v to vy (Thuvo = vp) and such that:

91d — Tyl oo 91d — Thlloo
¢ < liminf /e = Tnl < limsup ” H ol <cC.
nsoo  (logn)t/d n—00 (log n)'/d
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Scaling for ¢,

Optimal matchings in dimension d = 2: Leighton and Shor (1986), new proof by
Talagrand (2005), Garcia Trillos and S. (2014)
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Theorem

There are constants ¢ > 0 and C > 0 such that with probability one we
can find a sequence of transportation maps { 7} .. from 1 to v
(Thuro = vp) and such that:

<C.

n'/2||ld — Tpl|oo n'/2||ld — T,||
3 ¢ < liminf < limsu o
G) ~ nsoo (logn)¥/4 — v (log n)3/4
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Comment of ¢,

@ We require
log n)3/4 1
lim %720 ifd=2,
n—o0 n /2 €n
1/d
im (091 5 g a

n—oo nl/d g,

@ Note that for d > 3 this means that typical degree > log(n).
@ Does convergence hold if fewer than log(n) neighbors are connected
to?
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Comment of ¢,

@ We require

3/4
ngﬁngl:OHd:&
n—o00 nl/2 En

1/d
im (09T g g s,

n—oo nlt/d g,

@ Note that for d > 3 this means that typical degree > log(n).

@ Does convergence hold if fewer than log(n) neighbors are connected
to?
No. There exists ¢ > 0 such that ¢, < 0'09(1"/),, then with probability
one the random geometric graph is asymptotically disconnected.
Penrose (1999); Gupta and Kumar (1999); Goel,Rai and
Krishnamachari (2004).
This implies that for large enough n, min GCy, ., = 0. While inf C > 0.

So for d > 3 the condition is optimal in terms of scaling.
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