

# The p-Laplacian on Graphs with Applications in Image Processing and Classification

Abderrahim Elmoataz<sup>1,2</sup>, Matthieu Toutain<sup>1</sup>, Daniel Tenbrinck<sup>3</sup>

<sup>1</sup>UMR6072 GREYC, Université de Caen Normandie <sup>2</sup> Université de Paris-Est Larne-Valée <sup>3</sup>Department of Computational and Applied Mathematics, WWU Münster

Talk at the Alan Turing Institute Cambridge, 14.12.2015

wissen leben WWU Münster



- 1. Motivation
- 2. Introduction to weighted graphs
- 3. The graph p-Laplacian operator
- 4. Solving partial difference equations on graphs

**Outline** 

#### 1. Motivation

- 2. Introduction to weighted graphs
- 3. The graph p-Laplacian operator
- 4. Solving partial difference equations on graphs

wissen.leben WWU Münster

Outline



Motivation

## (Nonlocal) image processing



Aim: Use nonlocal information for image processing e.g., *denoising, inpainting, segmentation, ...* 



## Surface processing



Image courtesy: Gabriel Peyré via http://www.cmap.polytechnique.fr/~peyre/geodesic\_computations/

Aim: Approximate surfaces by meshes and process mesh data e.g., in *computer graphics, finite element methods, …* 



# Surface processing



Motivation



## Surface processing



Aim: Approximate surfaces by discrete points and process point cloud data e.g., in *3D vision, augmented reality, surface reconstruction, …* 



## Network processing



Aim: Investigate interaction and processes in networks of arbitrary topology e.g., in *social networks, computer networks, transportation, …* 

Graph based methods

Goal:

Use graphs to perform

filtering, segmentation, inpainting, classification, ...

on

data of arbitrary topology.

Question:

How to translate PDEs and variational methods to graphs?



## **Related works**

1. A. Elmoataz, O. Lezoray, S. Bougleux: Nonlocal Discrete Regularization on Weighted Graphs: A Framework for Image and Manifold Processing. IEEE Transactions on Image Processing 17(7) (2008)

2. Y. van Gennip, N. Guillen, B. Osting, A.L. Bertozzi: Mean Curvature, Threshold Dynamics, and Phase Field Theory on Finite Graphs. Milan Journal of Mathematics 82 (2014)

3. F. Lozes, A. Elmoataz, O. Lezoray: Partial Difference Operators on Weighted Graphs for Image Processing on Surfaces and Point Clouds. IEEE Transactions on Image Processing 23 (2014)

4. Leo Grady and Jonathan R. Polimeni, <u>"Discrete Calculus: Applied Analysis on Graphs for Computational Science"</u>, Springer (2010)

5. Andrea L. Bertozzi and Arjuna Flenner, <u>Diffuse interface models on graphs for classification of high</u> <u>dimensional data</u>, Multiscale Modeling and Simulation, 10(3), pp. 1090-1118, 2012.

- 1. Motivation
- 2. Introduction to weighted graphs
- 3. The graph p-Laplacian operator
- 4. Solving partial difference equations on graphs

wissen.leben WWU Münster

Outline

WILHELMS-UNIVERSITÄT MÜNSTER



We consider mainly *undirected*, weighted graphs in the following!



# Vertex functions

A vertex function  $f: V \to R^N$  assigns each  $v \in V$  a vector of features:

- $\rightarrow$  grayscale value, RGB color vector
- $\rightarrow$  3D coordinates
- $\rightarrow$  label



The space of vertex functions H(V) is a Hilbert space with the norm:

$$||f|| = \sqrt{\sum_{v_i \in V} \langle f(v_i), f(v_i) \rangle}$$



# Weight functions

A weight function w :  $E \rightarrow [0, 1]$  assigns each  $e \in E$  a weight based on the similarity of respective node features.

To compute a weight w(u,v) = w(v,u) for nodes  $u,v \in V$  we need:

- Symmetric distance function d(f(u),f(v)) = d(f(v),f(u)) ∈ R
   e.g., constant distance, *I*<sup>p</sup> norms, patch distance, ...
- 2. Normalized similarity function  $s(d(f(u),f(v))) \in [0, 1]$ e.g, constant similarity, probability density function, ...

#### **Example:**

$$w(u,v) = e^{-\frac{|d(u,v)|^2}{\sigma^2}}$$
, with  $d(u,v) = ||p_k(u) - p_k(v)||_2$ 

## Patch distance

Introduction



Pixel of interest

Intensity-based

Patch-based

Introduction

# Graph construction methods

1. є-ball graph



wissen.leben WWU Münster

Introduction

## Graph construction methods

2. k-Nearest Neighbour graph (directed):



wissen.leben WWU Münster

Introduction

#### Graph construction methods

2. k-Nearest Neighbour graph (directed):



- 1. Motivation
- 2. Introduction to weighted graphs
- 3. The graph p-Laplacian operator
- 4. Solving partial difference equations on graphs

wissen.leben WWU Münster

Outline

## Weighted finite differences on graphs

Let (V, E, w) be a weighted graph and let  $f : V \rightarrow \mathbb{R}^N$  be a vertex function. The weighted (nonlocal) finite difference  $d_w : H(V) \rightarrow H(E)$  of  $f \in H(V)$  along an edge  $(u,v) \in E$  is given as:

$$d_w f(u,v) = \sqrt{w(u,v)}(f(v) - f(u))$$

Then the weighted gradient of f in a vertex u is given as:

$$(\nabla_w f)(u) = (\partial_v f(u))_{v \in V} \quad \partial_v f(u) = \sqrt{w(u,v)} (f(v) - f(u))$$

Similarly, we can introduce the weighted upwind gradient as:  $0^{\pm}$  (())  $\sqrt{(1-1)^{2}}$  (())  $\frac{1}{2}$ 

$$\partial_v^{\pm} f(u) = \sqrt{w(u,v)} (f(v) - f(u))^{\perp}$$
$$(\nabla_w^{\pm} f)(u) = \left(\partial_v^{\pm} f(u)\right)_{v \in V}$$

using the notation  $x^+ = max(0,x)$  and  $y^- = -min(0,x)$ .

#### Special case: grayscale image

Let G = (V, E, w) be a directed 2-neighbour grid graph with the weight function w chosen as:

$$\partial_v f(u) = \sqrt{w(u,v)} \left( f(v) - f(u) \right) \qquad w(u,v) = \begin{cases} \frac{1}{h^2} & , & \text{if } u \sim v \\ 0 & , & \text{else} \end{cases}$$



Weighted finite differences correspond to forward differences!

## Adjoint operator and divergence

Let  $f \in H(V)$  be a vertex function and let  $G \in H(E)$  be an edge function. One can deduce the adjoint operator  $d^*_w \colon H(E) \to H(V)$  of  $d_w \colon H(V) \to H(E)$  by the following property:

$$\langle d_w f, G \rangle_{\mathcal{H}(E)} = \langle f, d_w^* G \rangle_{\mathcal{H}(V)}$$

Then the divergence  $div_w : H(E) \rightarrow H(V)$  of G in a vertex u is given as:

$$\operatorname{div}_{w} G(u) = -d_{w}^{*} G(u) = \sum_{v \sim u} \sqrt{w(u, v)} (G(u, v) - G(v, u))$$

We have in particular the following conservation law:

$$\sum_{u \in V} \operatorname{div}_w G(u) = 0$$

## PdE framework for graphs

We further want to translate PDEs to graphs and formulate them as partial difference equations (PdEs).

Example: Mimic heat equation on graphs

$$\frac{\partial f}{\partial t}(u,t) = \Delta_w f(u,t)$$

$$f(u,t=0) = f_0(u)$$
with
$$\Delta_w f(u) = \sum_{v \sim u} w(u,v)(f(v) - f(u))$$





#### The variational p-Laplacian

The variational p-Laplacian is a quasilinear elliptic partial differential operator of second order and can be given for  $u \in C^2(\Omega)$  as:

$$\Delta_p u = \operatorname{div}\left(\frac{\nabla u}{|\nabla u|^{2-p}}\right), \quad 1 \le p < \infty$$

Note that for p < 2 the p-Laplacian has critical points in  $\nabla u = 0$ .

The p-Laplacian equation with Dirichlet boundary conditions  $\Delta_p u = 0$  can be derived as Euler-Lagrange equation of the minimization problem :

$$E(u) = \frac{1}{p} \int_{\Omega} |\nabla u(x)|^p \, \mathrm{d}x$$

#### Applications:

- Modeling: Biological/physical processes with diffusion, e.g., heat equation
- Image processing: total variation (p=1) and Tikhonov regularization (p=2)

# The graph p-Laplacian

Let  $f \in H(V)$  be a vertex function. Then the isotropic graph p-Laplacian operator in an vertex u is given as:

$$(\Delta_{w,p}^{i}f)(u) = \frac{1}{2}\operatorname{div}_{w}\left(||\nabla_{w}f||^{p-2}d_{w}f\right)(u)$$

We can also define the anisotropic graph p-Laplacian operator in an vertex u as:

$$(\Delta_{w,p}^{a}f)(u) = \frac{1}{2} \operatorname{div}_{w} \left( |d_{w}f|^{p-2} d_{w}f \right)(u)$$
  
= 
$$\sum_{v \sim u} (w(u,v))^{p/2} |f(v) - f(u)|^{p-2} (f(v) - f(u))$$

- 1. Motivation
- 2. Introduction to weighted graphs
- 3. The graph p-Laplacian operator
- 4. Solving partial difference equations on graphs

wissen.leben WWU Münster

Outline



#### Diffusion processes on graphs

One important class of PdEs on graphs are diffusion processes of the form:

$$\begin{cases} \frac{\partial f(u,t)}{\partial t} &= \Delta^a_{w,p} f(u,t) ,\\ f(u,t=0) &= f_0(u) , \end{cases}$$

Applying forward Euler time discretization leads to an iterative scheme:

$$f^{n+1}(u) = f^n(u) + \Delta t \sum_{v \sim u} (w(u,v))^{p/2} |f(v) - f(u)|^{p-2} (f(v) - f(u))$$

Maximum norm stability can be guaranteed under the CFL condition:

$$1 \geq \Delta t \sum_{v \sim u} (w(u, v))^{p/2} |f(v) - f(u)|^{p-2}$$

**Applications** 

Denoising



Denoising

Noisy data



Toted teak via trianticate de isorissi n(go (too ab)) 1620000 iterrationss

## Interpolation problems on graphs

Another class of PdEs on graphs are interpolation problems of the form:

$$\begin{cases} \Delta^a_{w,p} f(u) = 0 , & \text{for } u \in A , \\ f(u) = g(u) , & \text{for } u \in \partial A . \end{cases}$$

for which  $A \subseteq V$  is a subset of vertices and  $\partial A = V \setminus A$  and the given information g are application dependent.

Solving this Dirichlet problem amounts in finding the stationary solution of a diffusion process with fixed boundary conditions.

$$\begin{cases} \frac{\partial f(u,t)}{\partial t} = \Delta^a_{w,p} f(u,t) , & \text{for } u \in A \\ f(u) = g(u) , & \text{for } u \in \partial A . \end{cases}$$





Applications 31

# Interactive segmentation



wissen.leben WWU Münster



Applications

## Interactive segmentation



Inpainting



Original image



Inpainting region



Local inpainting



Nonlocal inpainting



# Inpainting



Original image



Inpainting region



Local inpainting



Nonlocal inpainting



# Semi supervised classification



Applications

1) Graph framework unifies local and nonlocal methods

2) PdEs / discrete variational models applicable to data of arbitrary topology

- 3) Experimental results were demonstrated for:
  - Denoising
  - Inpainting
  - Semi supervised segmentation
  - Classification

Thank you for your attention! Any questions?

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

# Discrete optimization problems on graphs

We want to mimic variational models on graphs and formulate them as discrete optimization problems.

Example: ROF TV denoising model

$$||u||_{TV,p} = \sum_{x_i \in \mathcal{V}} ||(\nabla_w u)(x_i)||_p = \sum_{x_i \in \mathcal{V}} \left( \sum_{x_j \sim x_i} |(d_w u)(x_i, x_j)|^p \right)^{1/p}, \ 1 \le p < \infty$$
$$||u||_{TV,\infty} = \sum_{x_i \in \mathcal{V}} ||(\nabla_w u)(x_i)||_{\infty} = \sum_{x_i \in \mathcal{V}} \sup_{x_j \sim x_i} |(d_w u)(x_i, x_j)| \qquad , \ p = \infty$$

Find a minimizer  $u \in \mathcal{H}(\mathcal{V})$  of the energy  $E: \mathcal{H}(\mathcal{V}) \to \mathbb{R}, \quad E(u) = \lambda ||u - f||_2^2 + ||u||_{TV}$ 

 $\rightarrow$  Unified formulation for both local and nonlocal problems.

Appendix

1 /

Rudin, Osher, Fatemi:

#### Variational p-Laplacian and ∞-Laplacian

The variational p- and  $\infty$ -Laplacians are quasilinear elliptic partial differential operators of second order and can be given for  $u \in C^2(\Omega)$  as:

$$\Delta_p u = \operatorname{div} \left( \frac{\nabla u}{|\nabla u|^{2-p}} \right), \quad 1 \le p < \infty$$
$$\Delta_\infty u = \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^2 u}{\partial x_i \partial x_j} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j}$$

Note that for p < 2 the p-Laplacian has critical points in  $\nabla u = 0$ .

The p-Laplacian equation with Dirichlet boundary conditions  $\Delta_p u = 0$  can be derived as Euler-Lagrange equation of the minimization problem :

$$E(u) = \frac{1}{p} \int_{\Omega} |\nabla u(x)|^p \, \mathrm{d}x$$

#### Applications:

- Modeling: Biological/physical processes with diffusion, e.g., heat equation
- Image processing: total variation (p=1) and Tikhonov regularization (p=2)

39

Appendix

## Game p-Laplacian and ∞-Laplacian

The game p- and  $\infty$ -Laplacian are also known as normalized Laplacian and they are given as:

$$\Delta_p^G u = \frac{1}{p} |\nabla u|^{2-p} \Delta_p u = \frac{1}{p} |\nabla u|^{2-p} \operatorname{div} \left( \frac{\nabla u}{|\nabla u|^{2-p}} \right), \quad 1 \le p < \infty$$
$$\Delta_\infty^G u = |\nabla u|^{-2} \Delta_\infty u = |\nabla u|^{-2} \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^2 u}{\partial x_i \partial x_j} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j}$$

The game p-Laplacian equation  $\Delta_p^G u = 0$  is singular whenever  $p \neq 2$ . One is able to recover the mean curvature flow (p=1) and 2-Laplacian (p=2):

$$\Delta_1^G u = \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) |\nabla u| \qquad \Delta_2^G u = \frac{1}{2}\Delta u$$

The game p-Laplacian can be expressed as convex combination:

$$\Delta_{p}^{G} u = \frac{1}{p} \Delta_{1}^{G} u + \frac{1}{q} \Delta_{\infty}^{G} u , \quad \text{ for } \frac{1}{p} + \frac{1}{q} = 1 \text{ and } 1 < p, q < \infty$$

**Applications:** 

• Game theory: Tug-of-War game with noise for  $p = \infty$ 

**Appendix** 

## Nonlocal p-Laplacian

The nonlocal p-Laplacian for a given *continuous*, *normalized*, and *radial* function  $\mu: \mathbb{R}^n \to \mathbb{R}$  with compact support is given as:

$$\mathcal{L}_p u(x) = \int_{\Omega} \mu(x-y) |u(y) - u(x)|^{p-2} (u(y) - u(x)) \, \mathrm{d}y \,, \quad 1 \le p < \infty$$

If the convolution kernel  $\mu$  is chosen as  $\mu(x-y) = \frac{1}{|x-y|^{n+ps}}$ ,  $p \ge 1$ , 0 < s < 1 one derives the fractional p-Laplacian:

$$\mathcal{L}_p u(x) = \int_{\Omega} \frac{|u(y) - u(x)|^{p-2}}{|x - y|^{n+ps}} (u(y) - u(x)) \, \mathrm{d}y \,, \quad 1 \le p < \infty$$

In the case  $p = \infty$  this operator corresponds to the Hölder  $\infty$ -Laplacian:

$$\mathcal{L}_{\infty}u(x) = \max_{y \in \Omega, y \neq x} \left(\frac{u(y) - u(x)}{|y - x|^{\alpha}}\right) + \min_{y \in \Omega, y \neq x} \left(\frac{u(y) - u(x)}{|y - x|^{\alpha}}\right)$$

#### Applications:

- Image processing: Nonlocal regularization
- Modeling: Quantum phenomena in physics or population dynamics

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

#### A novel Laplacian operator on graphs

Let G = (V, E, w) be a weighted undirected graph and  $\alpha$ ,  $\beta$  : H(V)  $\rightarrow \mathbb{R}^{N}$  vertex functions with  $\alpha(u) + \beta(u) = 1$  for all  $u \in V$ . We propose a novel Laplacian operator on G as:

$$\mathcal{L}_{\omega,p}f(u) = \begin{cases} \alpha(u) \| (\nabla_w^+ f)(u) \|_{p-1}^{p-1} - \beta(u) \| (\nabla_w^- f)(u) \|_{p-1}^{p-1}, & 2 \le p < \infty \\ \alpha(u) \| (\nabla_w^+ f)(u) \|_{\infty} & -\beta(u) \| (\nabla_w^- f)(u) \|_{\infty}, & p = \infty \end{cases}$$

From previous works it gets clear that:

$$\Delta_{w,p} f(u) = ||\nabla_w^+ f(u)||_{p-1}^{p-1} - ||\nabla_w^- f(u)||_{p-1}^{p-1}$$

A simple factorization leads to this representation:

$$\mathcal{L}_{w,p}f(u) = 2\min(\alpha(u), \beta(u))\Delta_{w,p}f(u) \qquad \qquad \mathcal{L}_{w,\infty}f(u) = 2\min(\alpha(u), \beta(u))\Delta_{w,\infty}f(u) \\ + (\alpha(u) - \beta(u))^{+} \|(\nabla_{w}^{+}f)(u)\|_{p-1}^{p-1} \qquad \qquad + (\alpha(u) - \beta(u))^{+} \|(\nabla_{w}^{+}f)(u)\|_{\infty} \\ - (\alpha(u) - \beta(u))^{-} \|(\nabla_{w}^{-}f)(u)\|_{p-1}^{p-1}, \quad 2 \le p < \infty \qquad \qquad - (\alpha(u) - \beta(u))^{-} \|(\nabla_{w}^{-}f)(u)\|_{\infty}$$

#### **Observation:**

Novel operator is a combination of p-Laplacian and upwind gradient operators on graphs

Appendix