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(Nonlocal) image processing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aim: Use nonlocal information for image processing  

 e.g., denoising, inpainting, segmentation, …  



Motivation 5 

Surface processing  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aim: Approximate surfaces by meshes and process mesh data  

 e.g., in computer graphics, finite element methods, … 

Image courtesy: Gabriel Peyré via http://www.cmap.polytechnique.fr/~peyre/geodesic_computations/ 
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Surface processing  
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Surface processing  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aim: Approximate surfaces by discrete points and process point cloud data 

 e.g., in 3D vision, augmented reality, surface reconstruction, … 
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Network processing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aim: Investigate interaction and processes in networks of arbitrary topology 

 e.g., in social networks, computer networks, transportation, … 



Motivation 9 

Graph based methods 

 

Goal:  

Use graphs to perform  

 filtering, segmentation, inpainting, classification, ...   
on 

 data of arbitrary topology. 

 

 

 

Question: 

How to translate PDEs and variational methods to graphs?  
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Introducing weighted graphs 

A graph G = (V, E, w) consists of: 

  → a finite set of vertices V = (v1, …, vn) 

  → a finite set of edges E ⊆ V x V 

  → a weight function w : E → [0, 1]  

 

 

 

 

 

 

 

 

We consider mainly undirected, weighted graphs in the following! 
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Vertex functions 

A vertex function f : V → RN assigns each v∊V a vector of features: 

   → grayscale value, RGB color vector 

   → 3D coordinates 

   → label 

 

 

 

 

 

 

The space of vertex functions H(V) is a Hilbert space with the norm: 
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Weight functions 

A weight function w : E → [0, 1] assigns each e∊E a weight based on the 

similarity of respective node features. 

 

To compute a weight w(u,v) = w(v,u) for nodes u,v ∊ V we need: 

 

1. Symmetric distance function d(f(u),f(v)) = d(f(v),f(u)) ∊ R  

  e.g., constant distance, lp norms, patch distance, … 

 

2. Normalized similarity function s(d(f(u),f(v))) ∊ [0, 1] 

  e.g, constant similarity, probability density function, … 

 

Example:  
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Patch distance 
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Graph construction methods 

1. є-ball graph  



Introduction 

Graph construction methods 

2. k-Nearest Neighbour graph (directed): 

k=2 



Introduction 

Graph construction methods 

2. k-Nearest Neighbour graph (directed): 
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Weighted finite differences on graphs 
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Special case: grayscale image 

Let G = (V, E, w) be a directed 2-neighbour grid graph with the weight function 

w chosen as: 

   

 

 

 

 

 

 

 

 

 

 

Weighted finite differences correspond to forward differences! 

 

fi,j fi+1,j 

fi,j+1 

fi,j-1 

fi-1,j 
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Adjoint operator and divergence 

Let f ∊ H(V) be a vertex function and let G ∊ H(E) be an edge function. One 

can deduce the adjoint operator d*w : H(E) → H(V) of  

dw : H(V) → H(E) by the following property: 

 

 

 

 

Then the divergence divw : H(E) → H(V) of G in a vertex u is given as: 

 

 

 

We have in particular the following conservation law: 
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PdE framework for graphs 

We further want to translate PDEs to graphs and formulate them as partial 

difference equations (PdEs). 

 

Example: Mimic heat equation on graphs 

 

 

      with 
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The variational p-Laplacian 



Let f ∊ H(V) be a vertex function. Then the isotropic graph p-Laplacian operator 

in an vertex u is given as: 

 

 

 

 

We can also define the anisotropic graph p-Laplacian operator in an vertex u 

as: 
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The graph p-Laplacian 
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Diffusion processes on graphs 

One important class of PdEs on graphs are diffusion processes of the form: 

 

 

 

 

Applying forward Euler time discretization leads to an iterative scheme: 

 

 

 

 

Maximum norm stability can be guaranteed under the CFL condition: 
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Denoising 
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Denoising 

Noisy data Total variation denoising (local) 

600 iterations 

Total variation denoising (local) 

1200 iterations 

Total variation denoising (nonlocal) 

1200 iterations 
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Interpolation problems on graphs 

Another class of PdEs on graphs are interpolation problems of the form: 

 

 

 

for which A ⊆ V is a subset of vertices and ∂A = V∖A and the given information g are 

application dependent.   

 

Solving this Dirichlet problem amounts in finding the stationary solution of a diffusion 

process with fixed boundary conditions. 
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Interactive segmentation 
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Interactive segmentation 
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Inpainting 

Original image Inpainting region 

Local inpainting Nonlocal inpainting 
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Inpainting 

Original image Inpainting region 

Local inpainting Nonlocal inpainting 
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Semi supervised classification 
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Semi supervised classification 
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Summary 

 

1) Graph framework unifies local and nonlocal methods  

 

 

2) PdEs / discrete variational models applicable to data of arbitrary topology 

 

 

3) Experimental results were demonstrated for: 

• Denoising 

• Inpainting 

• Semi supervised segmentation 

• Classification 

 

 

Thank you for your attention! Any questions? 
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Discrete optimization problems on graphs 

We want to mimic variational models on graphs and formulate them as discrete 

optimization problems. 

 

Example: ROF TV denoising model 

 

 

 

 

 

 

 

 

→ Unified formulation for both local and nonlocal problems. 

 

Rudin, Osher, Fatemi:  
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Variational p-Laplacian and ∞-Laplacian 
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Game p-Laplacian and ∞-Laplacian 
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Nonlocal p-Laplacian 

Chambolle, Lindgren, Monneau: A Hölder infinity Laplacian. ESAIM: Control, Optimisation and Calculus of Variations 18 (2012) 
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A novel Laplacian operator on graphs 
Let G = (V, E, w) be a weighted undirected graph and α, β : H(V) →ℝN vertex functions with α(u) + 

β(u) = 1 for all u∊V. We propose a novel Laplacian operator on G as:  

 

 

 

 

From previous works it gets clear that: 

 

 

A simple factorization leads to this representation: 

 

 

 

 

 

Observation: 

Novel operator is a combination of p-Laplacian and upwind gradient operators on graphs 


