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Understanding and forecasting 
the weather is essential to the 
future of planet earth and maths 
place a central role in doing this 

Accurate weather forecasting is a mixture of 

•  Careful modelling of the complex physics of the 
ocean and atmosphere 

•  Accurate computations on these models 

•  Systematic collection of data 

•  A fusion of data and computation 

Data assimilation is the optimal way of 
combining a complex model with uncertain data 



Basic Idea of Data Assimilation 

Numerical Weather Prediction NWP calculation 
gives a predicted state          with an error  

True state of the weather is  

Make a series of observations y of some 
function           of the true state 

Eg. Limited set of temperature 
measurements with error 
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Now combine the prediction with the observations 
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Data: Sources of observation 



Both the NWP prediction and the data have errors. 

Can we optimally estimate the atmospheric state 
which is consistent with both the prediction and the 
data and estimate the resulting error? 

NOTE:  Approximately  

10^9    degrees of freedom 

10^6    data points 

 

So significantly underdetermined problem 

 

 



Assume initially: 

1.  Errors are unbiased Gaussian variables 

2.  Data and NWP prediction errors are uncorrelated 

3.   H(x) is a linear operator 
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Assumptions about the error 

 
Data error:   Gaussian, Covariance R 

Background (NWP) error:  Gaussian, Covariance B 

Maximum likelihood of data y given truth x is 

BLUE:     Find       which maximises  M 
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M = P(x y) /P(x) = e−J (x )
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So        minimises   J 
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Implementation: 
 
Minimise the functional 

This is implemented as 3D-VAR  (since 1999 in the Met Office) 

      : Background, derived from 6 hour NWP forecast 

      : Analysis 

      :  NWP forecast using         as initial data 
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Corrected 
forecast 

Previous 
forecast 

 4D VAR … Preferred variational method 

Use window of several observations over 6 hours 

 

Assimilation Window 
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Minimise 

Subject to the strong model constraint 
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xi+1 = Mi(xi)

Often assume perfect model, but can also deal with certain 
types of model error (both random and systematic) by using a 
weak constraint instead 



Estimation of the background and covariance errors 

Good estimates of the covariance matrices R and B are 
important to the effectiveness of 4D-VAR 

 

1.  To get the physics correct 

2.  To avoid spurious correlations between parameters 

3.  To give well conditioned systems  

 

NOTE:  B is a very large matrix, difficult to store and    
very difficult to update. Impractical to calculate using 
the Fokker-Plank equation 



Build meteorology into the calculation of B through  

Control Variable Transformations (CVTs) 

 
IDEA: Choose more ‘natural’ physical variables     which 
have uncorrelated errors so that the transformed 
covariance matrix is  block diagonal or even the identity 

 

Set 
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χ
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δx =Uχ =UpUvUhχ, B =UUT

Reduces the complexity of the system AND gives better 
conditioning for the linear systems 
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Reduces vertical correlations by projecting 
onto empirical orthogonal vertical modes 

Separates physical parameters into 
uncorrelated ones eg. temperature, wind, 
balanced and unbalanced 

Effective, but errors arise due to lack of resolution of 
physical features leading to spurious correlations 

[Cullen] 

Reduces horizontal correlations by 
projecting onto spherical harmonics 



Eg. Problems with stable boundary and inversion 
layers and assimilating radiosonde data 

Poor resolution leads to inaccurate predictions of fog and ice 





Solution one: increase global resolution 

 

                    VERY EXPENSIVE!!! 

Solution two: locally redistribute the computational mesh to 
resolve the features 

Cheap and effective!  [Piccolo, Cullen, B,Browne, Walsh] 
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δx =Uχ =UpUaUvUhχ, B =UUT

Adjust the vertical coordinates to concentrate points close to 
the inversion layer and reduce correlations 

 

Introduce an extra transformation [Cullen and Piccolo] 

 

 

€ 

Ua
−1

Adaptive mesh transformation applied to 
latitude-longitude coordinates 



Do this by using tools from adaptive mesh generation 
methods for PDES 
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dξ

= M(z)

Set:  z  original height variable 

              new ‘computational’ height variable 
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Relate these via the equation 

M called the ‘monitor function’ [B, Huang, Russell, Walsh] 



Take M large if there is active meteorology 

Eg. High potential vorticity 
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Initially use background state 
estimate, then update 
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Monitor function and the Adaptive Grid  
 

Piccolo&Cullen  

QJR Met Soc 2011 
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First calculation 

UK4 domain: 3 Jan 2011 00z 

Updated calculation 



Applied by Chiara Piccolo to the Met Office UK4 model 

RMS  T (K) RH (%) u (m/ s) v (m/s) 
Control 0.76 0.045 1.32 1.16 
Test 0.64 0.045 1.29 1.16 
Nobs 1011 901 819 819 

  Test case: 8th Feb 2010.  

 

 Significant reduction in RMS error especially for 
temperatures Piccolo&Cullen,  QJR Met Soc 2011 

Particularly effective for the 2m temperatures 
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RMS error: Analysis - Observations 
theta zonal wind 

relative humidity meridional wind 



Adaptive mesh implemented operationally in 
November 2010. 

Now extending it to a fully three dimensional 
implementation [B,Browne,Piccolo] 



Used together with Met Office Open Road software to 
advise councils on road gritting over Christmas 



Conclusions 

Data assimilation is an optimal way of  

merging models with data 

 

Useful for model tuning, validation,  

evaluation, uncertainty quantification and reduction 

 

Very effective in meteorology 

 

Many other applications to Planet Earth 

eg. Climate change, oil reservoir modelling, geophysics, 
energy management and even crowd behaviour 



Solution: Find      to minimise nonlinear function J 

Need forward calculation to find     and backward solve to 
satisfy the constraints 

VERY expensive for high dimensional problems!!!  Only 
have limited time to do the calculation (20 mins) 

              Incremental 4D-Var:  Cheaper! 
1. Assume      is close to  

2. Linearise  J about       and minimise this function using an 
iterative method eg. BFGS 

3. Repeat if needed (not usually)  

BUT: Relies on assumption of near linearity to work well 
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Very effective method!! 

Developed at ECMWF 

Met Office operational in 2004 
[Lorenc, …. ] 

Used by many other centres 



Observation Volumes in 6 hours 
Category 
 

Count % 
used 

Category 
 

Count % 
use

d 

TEMPs 637 99% Satwinds: JMA 26103 4% 

PILOTs 307 99% Satwinds: NESDIS 142478 3% 

Wind Profiler 
1355 39% Satwinds: 

EUMETSAT 
220957 1% 

Land Synops 

16551 99% Scatwinds: Seawinds 436566 1% 

Ships 3034 84% Scatwinds: ERS 27075 2% 
Buoys 8727 63% Scatwinds: ASCAT 241626 4% 
Amdars 64147 23% SSMI/S 532140 1% 
Aireps 7144 12% SSMI 698048 1% 
GPS-RO 776 99% ATOVS 1127224 3% 

AIRS 75824 6% 
IASI 80280 3% 



Can estimate      using  Bayesian analyis: 
 

Maximum likelihood estimate of data  y given  

 

 

 

 

 

 

Best RMS unbiased estimate of the true state: BLUE 

Minimum error variance  
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4D-VAR idea:   Evolutionary model   M   (nonlinear)  

Unknown initial state    

 

Times                                 Over a time window 

Leads to state estimates  

Data y over window 

Find      so that the  

estimates fit the data 
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t = t0,t1,t2,!


