Adaptive Methods for Data Assimilation in Meteorology

Chris Budd

Joint work with Chiara Piccolo, Mike Cullen (Met Office) Melina Freitag, Phil Browne, Emily Walsh, Nathan Smith and Sian Jenkins (Bath)

Met Office

Understanding and forecasting the weather is essential to the future of planet earth and maths place a central role in doing this

Accurate weather forecasting is a mixture of

- Careful modelling of the complex physics of the ocean and atmosphere
- Accurate computations on these models
- Systematic collection of data
- A fusion of data and computation

Data assimilation is the optimal way of combining a complex model with uncertain data

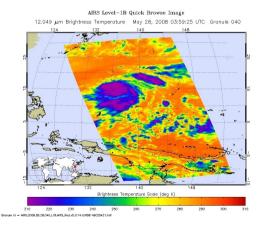
Basic Idea of Data Assimilation

True state of the weather is χ_t

Numerical Weather Prediction NWP calculation gives a predicted state X_b with an error

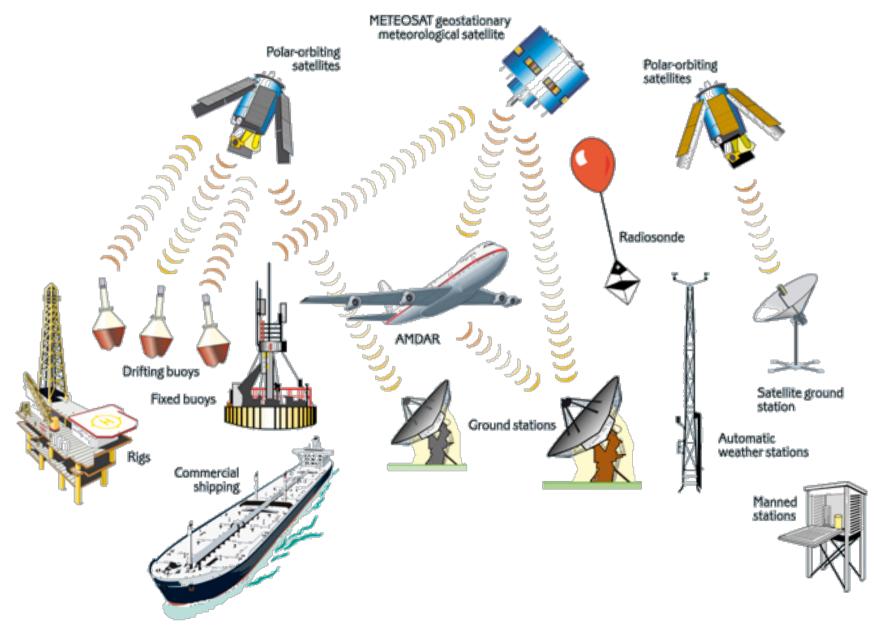
Make a series of observations y of some function $H(x_t)$ of the true state

Eg. Limited set of temperature measurements with error



Now combine the prediction with the observations

Data: Sources of observation

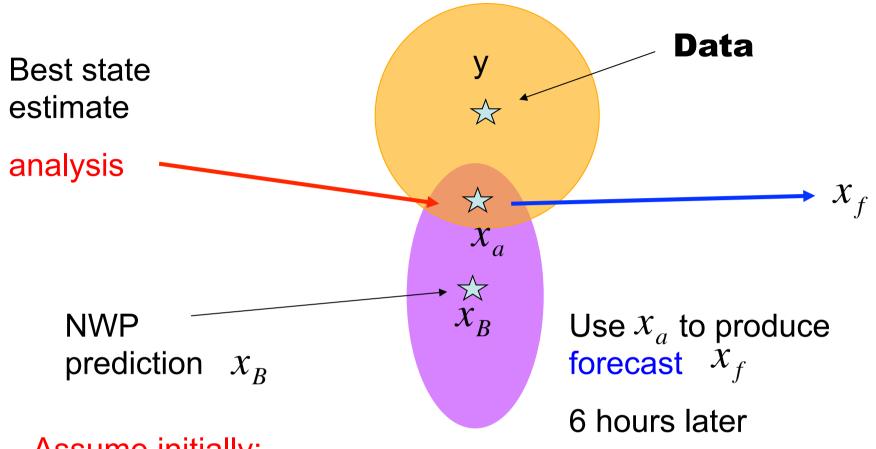


Both the NWP prediction and the data have errors.

Can we optimally estimate the atmospheric state which is consistent with both the prediction and the data and estimate the resulting error?

- **NOTE:** Approximately
- 10^9 degrees of freedom
- 10^6 data points

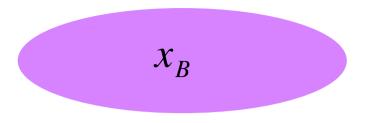
So significantly underdetermined problem



Assume initially:

- 1. Errors are unbiased Gaussian variables
- 2. Data and NWP prediction errors are uncorrelated
- 3. H(x) is a linear operator

Assumptions about the error



Data error: Gaussian, Covariance R Background (NWP) error: Gaussian, Covariance B Maximum likelihood of data y given truth x is

$$M = P(x|y)/P(x) = e^{-J(x)}$$

$$J(x_a) = \frac{1}{2} (x_a - x_b)^T B^{-1} (x_a - x_b) + \frac{1}{2} (Hx_a - y)^T R^{-1} (Hx_a - y)$$

BLUE: Find X_a which maximises M

So X_a minimises J

Implementation:

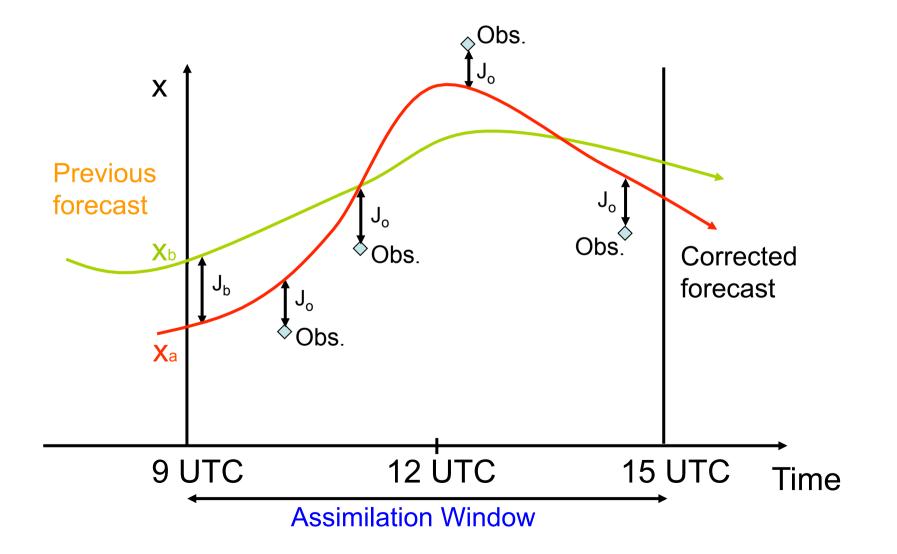
Minimise the functional

$$J(x_a) = \frac{1}{2} (x_a - x_b)^T B^{-1} (x_a - x_b) + \frac{1}{2} (Hx_a - y)^T R^{-1} (Hx_a - y)$$

This is implemented as 3D-VAR (since 1999 in the Met Office)

- x_B = Background, derived from 6 hour NWP forecast x_a : Analysis
- x_f : NWP forecast using x_a as initial data

4D VAR ... Preferred variational method Use window of several observations over 6 hours



Minimise

$$J(x_0) = \frac{1}{2} (x_0 - x_b)^T B^{-1} (x_0 - x_b) + \frac{1}{2} \sum_{i=0}^N (Hx_i - y_i)^T R^{-1} (Hx_i - y_i)$$

Subject to the strong model constraint

$$x_{i+1} = M_i(x_i)$$

Often assume perfect model, but can also deal with certain types of model error (both random and systematic) by using a weak constraint instead

Estimation of the background and covariance errors

Good estimates of the covariance matrices R and B are important to the effectiveness of 4D-VAR

- 1. To get the physics correct
- 2. To avoid spurious correlations between parameters
- 3. To give well conditioned systems

NOTE: B is a very large matrix, difficult to store and very difficult to update. Impractical to calculate using the Fokker-Plank equation Build meteorology into the calculation of B through Control Variable Transformations (CVTs)

IDEA: Choose more 'natural' physical variables χ which have uncorrelated errors so that the transformed covariance matrix is block diagonal or even the identity

Set

$$\kappa = U\chi = U_p U_v U_h \chi, \qquad B = U$$

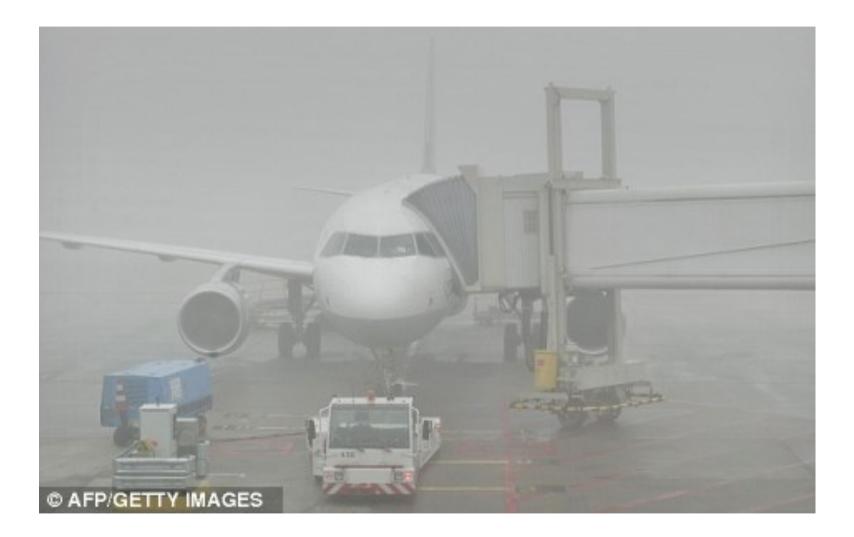
Reduces the complexity of the system AND gives better conditioning for the linear systems

- U_p^{-1} Separates physical parameters into uncorrelated ones eg. temperature, wind, balanced and unbalanced
- U_v^{-1} Reduces vertical correlations by projecting onto empirical orthogonal vertical modes
- U_h^{-1} Reduces horizontal correlations by projecting onto spherical harmonics

Effective, but errors arise due to lack of resolution of physical features leading to spurious correlations [Cullen]

Eg. Problems with stable boundary and inversion layers and assimilating radiosonde data

Poor resolution leads to inaccurate predictions of fog and ice

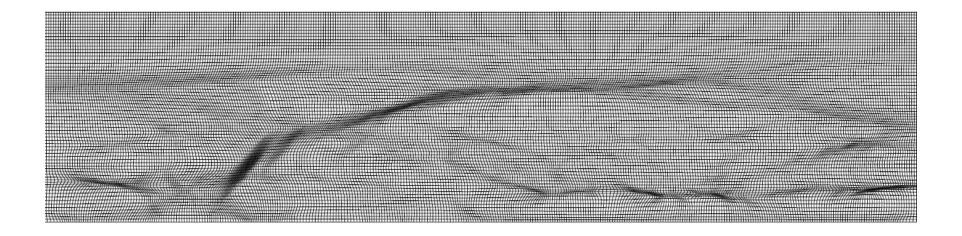


Solution one: increase global resolution

VERY EXPENSIVE!!!

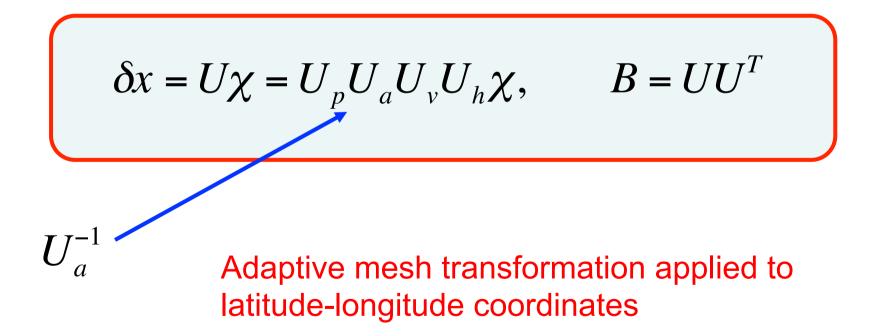
Solution two: locally redistribute the computational mesh to resolve the features

Cheap and effective! [Piccolo, Cullen, B,Browne, Walsh]



Adjust the vertical coordinates to concentrate points close to the inversion layer and reduce correlations

Introduce an extra transformation [Cullen and Piccolo]



Do this by using tools from adaptive mesh generation methods for PDES

Set: z original height variable

 ξ new 'computational' height variable

Relate these via the equation

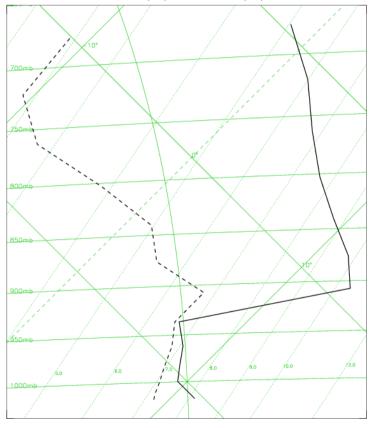
$$\frac{dz}{d\xi} = M(z)$$

M called the 'monitor function' [B, Huang, Russell, Walsh]

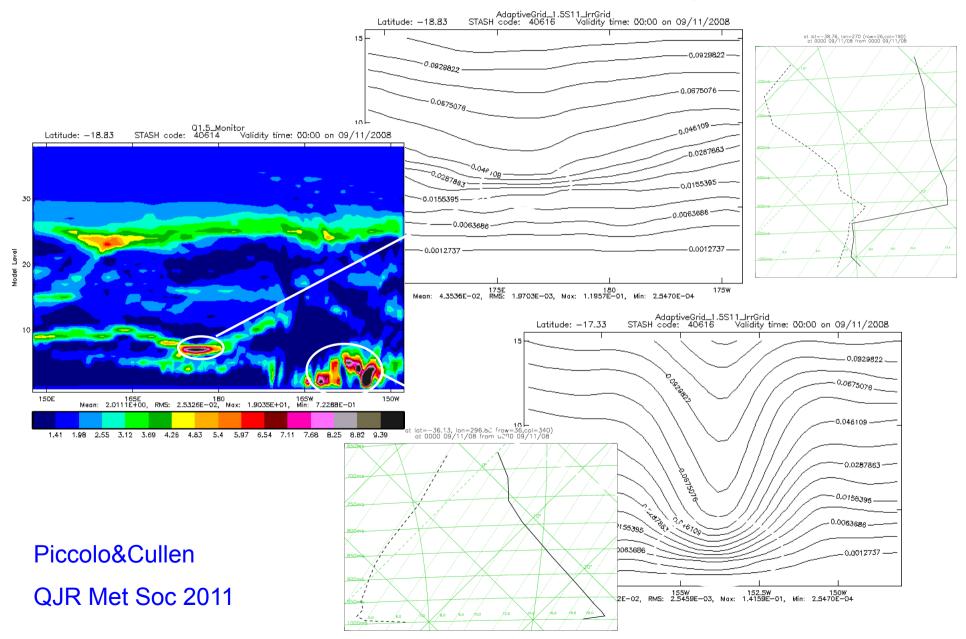
Take M large if there is active meteorology Eg. High potential vorticity

$$M = \sqrt{1 + c^2 \left(\frac{\partial \theta}{\partial z}\right)^2}$$

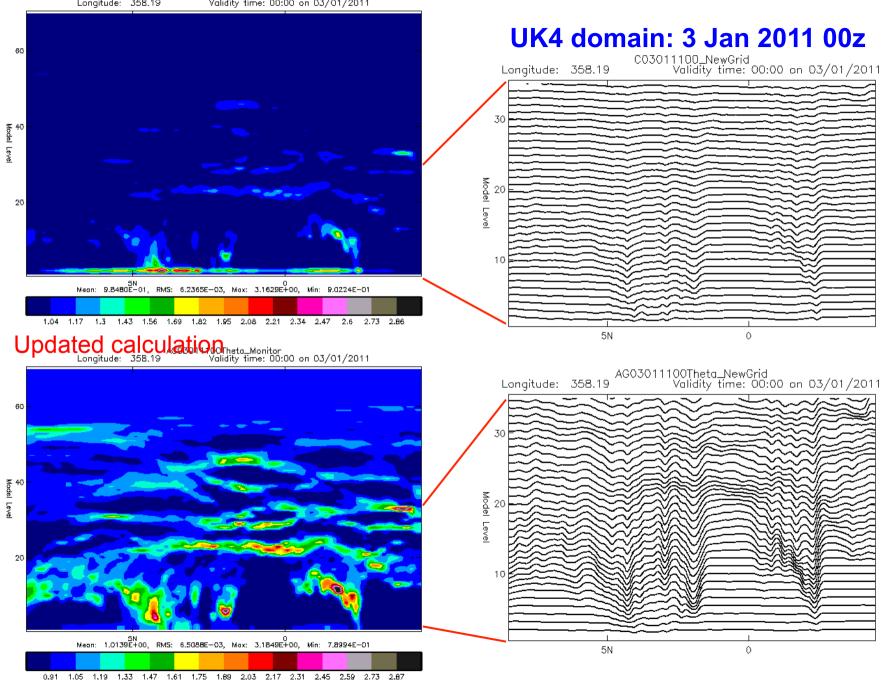
Initially use background state estimate, then update



Monitor function and the Adaptive Grid



First calculation Longitude: 358.19 Validity time: 00:00 on 03/01/2011



Applied by Chiara Piccolo to the Met Office UK4 model

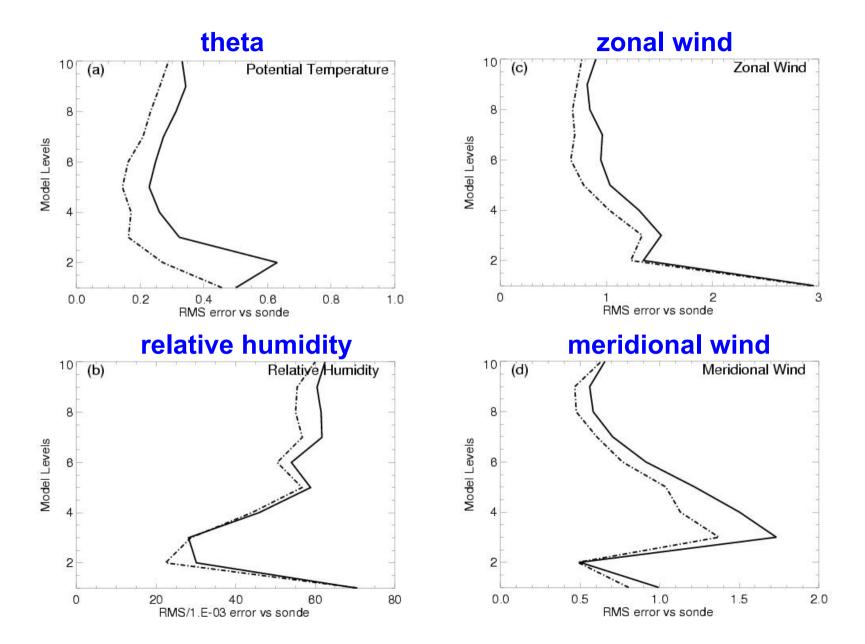
Test case: 8th Feb 2010.

Significant reduction in RMS error especially for temperatures Piccolo&Cullen, QJR Met Soc 2011

RMS	Т (К)	RH (%)	u (m/ s)	v (m/s)
Control	0.76	0.045	1.32	1.16
Test	0.64	0.045	1.29	1.16
N _{obs}	1011	901	819	819

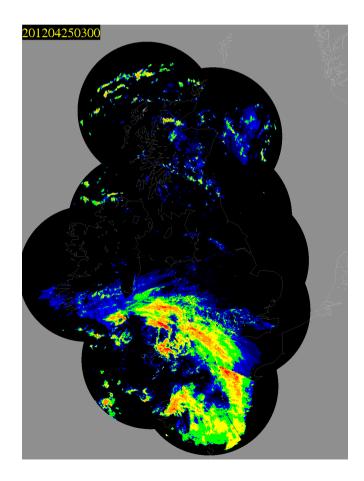
Particularly effective for the 2m temperatures

RMS error: Analysis - Observations

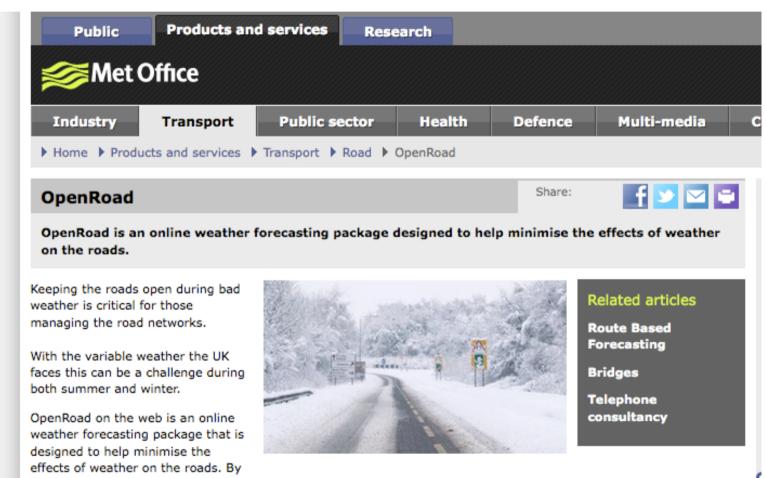


Adaptive mesh implemented operationally in November 2010.

Now extending it to a fully three dimensional implementation [B,Browne,Piccolo]



Used together with Met Office Open Road software to advise councils on road gritting over Christmas



providing all your key road weather information in a clear format, it enables road decision-makers to do their jobs more easily, more cost-effectively and with greater confidence.

Conclusions

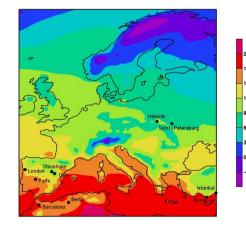
Data assimilation is an optimal way of merging models with data

Useful for model tuning, validation,

evaluation, uncertainty quantification and reduction

Very effective in meteorology

Many other applications to Planet Earth



eg. Climate change, oil reservoir modelling, geophysics, energy management and even crowd behaviour

Solution: Find X_0 to minimise nonlinear function J

Need forward calculation to find x_i and backward solve to satisfy the constraints

VERY expensive for high dimensional problems!!! Only have limited time to do the calculation (20 mins)

Incremental 4D-Var: Cheaper!

1. Assume x_0 is close to x_B

2. Linearise J about x_B and minimise this function using an iterative method eg. BFGS

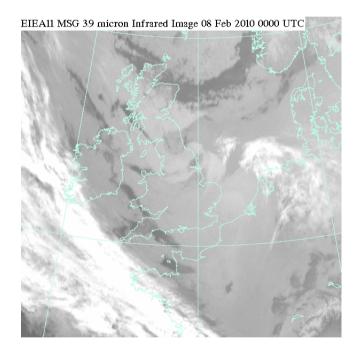
3. Repeat if needed (not usually)

BUT: Relies on assumption of near linearity to work well

Very effective method!!

Developed at ECMWF Met Office operational in 2004 [Lorenc,]

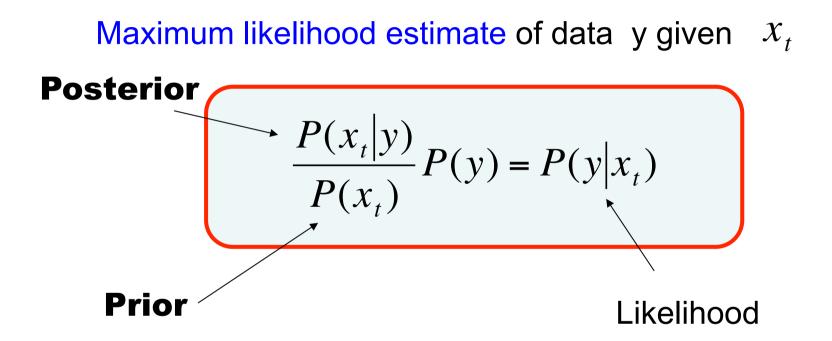
Used by many other centres



Observation Volumes in 6 hours

Catagony	Count	%	Category	Count	%
Category		used			use d
					d
TEMPs	637	99%	Satwinus. JiviA	26103	4%
PILOTs	307	99%	Satwinds: NESDIS	142478	3%
	1355	39%	Satwinds:	220957	1%
Wind Profiler			EUMETSAT		
	16551	99%	Scatwinds: Seawinds	436566	1%
Land Synops					
Ships	3034	84%	Scatwinds: ERS	27075	2%
Buoys	8727	63%	Scatwinds: ASCAT	241626	4%
Amdars	64147	23%	SSMI/S	532140	1%
Aireps	7144	12%	SSMI	698048	1%
GPS-RO	776	99%	ATOVS	1127224	3%
			AIRS	75824	6%
			IASI	80280	3%

Can estimate x_a using Bayesian analyis:



Best RMS unbiased estimate of the true state: BLUE Minimum error variance 4D-VAR idea: Evolutionary model M (nonlinear)

Unknown initial state x_0

Times $t = t_0, t_1, t_2, \cdots$ Over a time window Leads to state estimates x_1, x_2, \cdots

Data y over window

Find x_0 so that the estimates fit the data

