
Verified Secure Implementations
for the HTTPS Ecosystem

miTLS &
Everest*

*t
h

e
 E

v
e
re

st
 V

E
R

if
ie

d
E
n

d
-t

o
-e

n
d

 S
e
cu

re
 T

ra
n

sp
o

rt

http://www.inria.fr/
http://www.inria.fr/

Services & Applications

ServersClients

cURL WebKit IIS ApacheSkype NginxEdge

HTTPS Ecosystem

4

TLS

X.509

HTTPS

RSA SHA

ECDH

Network buffers

Untrusted network (TCP, UDP, …)

Crypto Algorithms

4Q

Services & Applications

ASN.1
Certification

Authority

ServersClients

cURL WebKit IIS ApacheSkype NginxEdge

Buffer overflows
Incorrect state machines
Lax certificate parsing
Weak or poorly implemented crypto
Side channels

Informal security goals
Dangerous APIs
Flawed standards

OpenSSL, SChannel, NSS, …
Still patched every month!

5

TLS

X.509

HTTPS

RSA SHA

ECDH

Network buffers

Untrusted network (TCP, UDP, …)

Crypto Algorithms

4Q

Services & Applications

ASN.1
Certification

Authority

ServersClients

cURL WebKit IIS ApacheSkype NginxEdge

Threat modelSecurity Goal

connect(server,port);

send “GET…”;

data = recv();

send “POST…”;

…

accept(port);

request = recv();

send “<html>…”;

order = recv();

…

authentication

infrastructure

Client Server

(some of them broken)
Client Server

Excluding core
crypto algorithms

Not fully automated
(paper proofs too)

Not production code
(poor performance)

1. Internet Standard compliance & interoperability

2. Verified security

3. Experimental platform

miTLS v0.9 released in Nov’15

using F# & F7 (stable)
including testing tools

using F* (in progress)
with early support for TLS 1.3

Application security (API, configuration) (1) data streams

Cryptographic schemes & assumptions (2) main theorem

Protocol design (3) state-machine attacks

Implementation safety

Information control (leakage, privacy)

Verification tools (F#, F7, F*, Z3, Lean)

// F* definition of Application Data

abstract type data (i:id) = bytes

let ghost #(i:id) (d:data i): GTot bytes = d

type fragment (i:id) (rg:range) =
d:data i {within (ghost d) rg}

val repr: i:id{¬safe i}
→ rg:range
→ d:fragment i rg
→ Tot (b:bytes {b = ghost d})

val make: i:id{¬safe i}
→ rg:range
→ b:bytes{within b rg}
→ Tot (d:fragment i rg {b = ghost d})

Stream (i:id)
state shared between
a reader and a writer

data

data

data

data

data

warning

close

TLS.read

TLS.write

i:id
connection info

Connection

Data i#3

Data i#1

Data i#0

Data i #0

Data i #1

Data i #2

Data i #3
Warning i

Error i

duplex
streams

when
“safe i”

i:id
connectioninfo
(how we got here)

writer

re
ad

er

read
er

writer

PeerConnection

concrete TLS & ideal TLS
are computationally
indistinguishable

miTLS

implementation

miTLS typed API

Bytes, Network

lib.fs

Cryptographic Provider

cryptographic assumptions

any program

representing the

adversary

application
data stream

miTLS ideal

implementation

miTLS typed API

application

Safe, except for a

negligible probability
Safe by typing

(info-theoretically)

7,000 lines of F#
verified against
3,000 lines of F7
type annotations

The security statement is precise
but complex, roughly the size of the
TLS API and cryptographic assumptions

miTLS

implementation

miTLS typed API

Bytes, Network

lib.fs

Cryptographic Provider

cryptographic assumptions

any program

representing the

adversary

application
data stream

miTLS ideal

implementation

miTLS typed API

application

miTLS clean, modular implementation
supports rapid prototyping against others

• One line of F# script for each TLS message,
with good cryptographic defaults

• Simple setup for “man-in-the-middle”
attacks and concurrent connections

• Built-in library of recent vulnerabilities

• Fuzzing on the TLS state machine

Focus on ease of use (but still for experts)

https://www.secure-resumption.com/

flaw in the standard

now patched in TLS

deviant traces

new attacks against all mainstream implementations

Test results

for OpenSSL:

each colored

arrow is a bug

deviant traces

Many many exploitable bugs

new attacks against all mainstream implementations

An attack

against TLS

Java Library

(open for

10 years)

Man-in-the-middle attack against:

• servers that support RSA_EXPORT (512bit keys obsoleted in 2000) from 40% to 8.5%

• clients that accept ServerKeyExchange in RSA (state machine bug) almost all browsers
have been patched

Factoring

in 7-10h

We found & fixed flaws in legacy implementations of TLS…
probably many others still in there. Can we be more constructive?

Much discussions
IETF, Google, Mozilla, Microsoft, CDNs,
cryptographers, network engineers, …

Much improvements
• Modern design

• Fewer roundtrips

• Stronger security

New implementations
required for all

• Be first & verified too!

• Find & fix flaws before it’s too late

IETF TLS WG95
(April’16)

• 13th draft discussed

• Finalized in 6 months?

Everest (2016—2021):
Verified Drop-In
Replacements
for the HTTPS
ecosystem

TLS

X.509

HTTPS

RSA SHA

ECDH

Network buffers

Crypto Algorithms

4Q

ASN.1

27

TLS

X.509

HTTPS

RSA SHA

ECDH

Network buffers

Untrusted network (TCP, UDP, …)

Crypto Algorithms

4Q

Services & Applications

ASN.1
Certification

Authority

ServersClients

cURL WebKit IIS ApacheSkype NginxEdge

Redmond

Paris

Cambridge

Chris

Hawblitzel

Cédric

Fournet

Antoine

Delignat-Lavaud

Nick Benton

Karthik Bhargavan

Rustan Leino

Bryan Parno

Manos Kapritsos

Jay Lorch

Markulf

Kohlweiss

Samin Ishtiaq

Srinath Setty

Michael Roberts

Jean Karim

Zinzindohoue

Santiago

Zanella-Beguelin

Nik Swamy

Jonathan

Protzenko

Aseem Rastogi

Bangalore

Leonardo de Moura

Catalin Hritcu

Nadim Kobeissi

Barry Bond

http://www.inria.fr/
http://www.inria.fr/

Demo: tracing
https://www.visualstudio.com/

• Trust is transitive

• Trust is implicit

• Trust is a matter of state

TLS

X.509

HTTPS

RSA SHA

ECDH

Network buffers

Crypto Algorithms

4Q

ASN.1

https://www.visualstudio.com/

https://letsencrypt.org/ ***

TLS

X.509

HTTPS

RSA SHA

ECDH

Network buffers

Crypto Algorithms

4Q

ASN.1

https://letsencrypt.org/

TLS

X.509

HTTPS

RSA SHA

ECDH

Network buffers

Crypto Algorithms

4Q

ASN.1

Verified Secure Implementations
for the HTTPS Ecosystem

miTLS &
Everest*

*t
h

e
 E

v
e
re

st
 V

E
R

if
ie

d
E
n

d
-t

o
-e

n
d

 S
e
cu

re
 T

ra
n

sp
o

rt

http://www.inria.fr/
http://www.inria.fr/

