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Introduction



Topological data analysis and topological inference

• Geometric inference and algebraic topology tools, computational
topology has recently witnessed important developments with regards to
data analysis, giving birth to the field of topological data analysis (TDA).

• The aim of TDA is to infer relevant, qualitative and quantitative topolog-
ical structures (clusters, holes ...) directly from the data.

• The two popular methods in TDA : Mapper algorithm [Singh et al., 2007]
and persistent homology [Edelsbrunner et al., 2002].

• TDA methods relies on Topological
Inference methods / results.

• Topological inference methods aim to
infer topological properties of an unknown
topological space X, typically from a point
cloud Xn “close” to X.



From [Carlson, 2013]: The point of view on the study of shape which is
particular to topology can be described in terms of three points.

1. The properties of shape studied by topology are independent of any par-
ticular coordinate representation of the shape in question, and instead
depends only on the pairwise distances between the points making up the
shape.

2. Topological properties of shape are deformation invariant, i.e. they do
not change if the shape is stretched or compressed.

3. Topology constructs compressed representations of shapes, which retain
many interesting and useful qualitative features while ignoring some fine
detail.

Properties of Topological Methods for Data Analysis



[distribution of galaxies]

[3D shape database]

[Magnetometer Data]

Application fields of TDA methods



Topological data analysis methods can be used:

• For exploratory analysis, visualization:

• For feature extraction in supervised settings (prediction) :

[Chazal et al., 2014a]

[Chazal et al., 2015a]



Non exhaustive list of questions for a statistical approach to TDA :

• proving consistency of TDA
methods.

• providing confidence regions for topological features and discussing the
significance of the estimated topological quantities.

• selecting relevant scales at which the topological phenomenon should be
considered.

• dealing with outliers and providing robust methods for TDA.

Statistics and TDA
Until very recently, TDA and topological inference mostly relied on deterministic
approaches. Alternatively, a statistical approach to TDA means that :

• we consider data as generated from an unknown distribution

• the inferred topological features by TDA methods are seen as estimators
of topological quantities describing an underlying object.



Homology
and

Persistent homology



Approximating models for TDA : Offsets and Simplicial Complexes

Point clouds in themselves do not carry any non trivial topological or geometric
structure.

For a point cloud Xn in Rd (or in a metric space),
the r-offset of Xn is defined by

Xrn =
⋃
x∈Xn

B(x, r).

More generally, for any compact set X (in
Rd),

Xr :=
⋃
x∈X

B(x, r) = d−1
X ([0, r])

where the distance function dX to X is

dX(y) = inf
x∈X
‖x− y‖.

General idea: deduce from (Xrn)r>0 some topological and geometric information
of an underlying object.



Approximating models for TDA : Offsets and Simplicial Complexes

Non-discrete sets such as offsets, and also continuous mathematical shapes like
curves, surfaces cannot easily be encoded as finite discrete structures.

A geometric simplicial complex C is a set of simplices such that:

• Any face of a simplex from C is also in C.

• The intersection of any two simplices s1, s2 ∈ C is either a face of both
s1 and s2, or empty.



Approximating models for TDA : Offsets and Simplicial Complexes
Examples:

• A simplex [x0, x1, · · · , xk] is in the Čech complex Čechα(Xn) if and only

if
⋂k
j=0B(xj , α) 6= ∅.

• A simplex [x0, x1, · · · , xk] is in the Rips complex Ripsα(Xn) if and only if
‖xj − xj′‖ ≤ α for all j, j′ ∈ {1, . . . , k}.

Can be also defined for a set of points in any metric space or for any compact
metric space.

Rips Čech

Nerve Theorem [Hatcher, 2001] : the offsets Xαn of a point cloud Xn in Rd are
homotopy equivalent to the Čech complex Čechα(Xn)



Filtrations of simplicial complexes

One difficult question : How can we choose a “convenient” scale parameter ?

Given a point cloud Xn in Rd, we generally define a filtration of (nested simpli-
cial) complexes by considering all the possibles scale parameters α : (Cα)α∈A

α

Cα1 Cα2



Topological invariants

For comparing topological spaces, we condiser topological invariants (preserved
by homeomorphism) : numbers, groups, polynomials.

How topological spaces can be compared from a topological point of view ?



Topological invariants

Homotopy is weaker than homeomorphism but is preserves many topological
invariants.

Two continous functions f : X → Y and g : X → Y are homotopic if there
exists a continous application H : X × [0, 1] → Y such that H(·, 0) = f and
H(·, 1) = g.

Two topological spaces X and Y are homotopic if there exists two continous
applications f : X → Y and g : Y → X such that

• g ◦ f is homotopic to idX ;

• f ◦ g is homotopic to idY ;

For comparing topological spaces, we condiser topological invariants (preserved
by homeomorphism) : numbers, groups, polynomials.

How topological spaces can be compared from a topological point of view ?



Topological Stability and Regularity

Topological inference : under “regularity assumptions”, topological properties of
X can be recovered from (the off-sets) of a close enough object Y.



Topological Stability and Regularity

Topological inference : under “regularity assumptions”, topological properties of
X can be recovered from (the off-sets) of a close enough object Y.

• The local feature size is a local notion of regularity :
For x ∈ X, lfsX(x) := d (x,M(Xc)) .

• Weak feature size and its extensions [Chazal and Lieutier, 2007] (by con-
sidering the critical values of dX).

• The global version of the local feature
size is the reach [Federer, 1959] :

κ(X) = inf
x∈Xc

lfsX(x).

The reach is small if either X is not
smooth or if X is close to being self-
intersecting.



Topological Stability and Regularity

Topological inference : under “regularity assumptions”, topological properties of
X can be recovered from (the off-sets) of a close enough object Y.

Theorem [Chazal and Lieutier, 2007]: Let X and Y be two compact sets in
Rd and let ε > 0 be such that dH(X,Y) < ε, wfs(X) > 2ε and wfs(Y) > 2ε.
Then for any 0 < α < 2ε, Xα and Yβ are homotopy equivalent.

Example :

dH(X,Y) = inf {α ≥ 0 | X ⊂ Yα and Y ⊂ Xα}



Homology inference

• Homotopy is not easy to compute in practice.

• Singular homology provides a algebraic description of “holes” in a geo-
metric shape (connected components, loops, etc ...)

• Betti number βk is the rank of the k-th homology group.

• Computational Topology : Betti numbers can be computed on simplicial
complexes.

Homology inference [Niyogi et al., 2008 and 2011] [Balakrishnan et al., 2012] :
The Betti number (actually the homotopy type) of Riemannian manifolds with
positive reach can be recovered with high probability from offsets of a sample on
(or close to) the manifold.



Persistent homology

Starting from a point cloud Xn, let Filt = (Cα)α∈A be a fitration of nested
simplicial complexes.

• multiscale information ;

• more stable and more robust ;

• (but does not answer the scale selection problem...)

α

Persistent homology: identification of “persistent” topological features along the
filtration.



Barecodes and Persistence Diagrams

Xn

Barecode

Filtration of simplicial
complexes Filt(Xn)

Offsets



Barecodes and Persistence Diagrams

Dgm (Filt(Xn))
Persistence diagram of the

filtration Filt(Xn) built on Xn.

Xn

Barecode

Filtration of simplicial
complexes Filt(Xn)

Offsets birth

death



Distance between persistence diagrams and stability

birth

death

∞

0

Multiplicity: 2

Add the diagonal

Dgm1

Dgm2

The bottleneck distance between two diagrams Dgm1 and Dgm2 is

db(Dgm1,Dgm2) = inf
γ∈Γ

sup
p∈Dgm1

‖p− γ(p)‖∞

where Γ is the set of all the bijections between Dgm1 and Dgm2 and

‖p− q‖∞ = max(|xp − xq|, |yp − yq|).



Distance between persistence diagrams and stability

birth

death

∞

0

Multiplicity: 2

Add the diagonal

Theorem [Chazal et al., 2012]: For any compact metric spaces (X, ρ) and (Y, ρ′),

db (Dgm(Filt(X)),Dgm(Filt(Y))) ≤ 2 dGH (X,Y) .

Consequently, if X and Y are embedded in the same metric space (M, ρ) then

db (Dgm(Filt(X)),Dgm(Filt(Y))) ≤ 2 dH (X,Y) .

Dgm(Filt(Y))

Dgm(Filt(X))



Statistics
and

Persistent homology



Persistence diagram inference [Chazal et al., 2014b]

∞

0
0

X̂n Filt(X̂n)

Dgm(Filt(X̂n))
n points sampled in X
according to µ

Filt(X)

∞

0
0

Dgm(Filt(X))

X

Convergence
???

Estimator of Dgm(Filt(K))

(M, ρ) metric space
X compact set in M. well defined for any

compact metric space
[Chazal et al., 2012]

Joint work with F. Chazal, M. Glisse and C. Labruère.



Theorem: For a, b > 0 :

sup
µ∈P(a,b,M)

E
[
db(Dgm(Filt(Xµ)),Dgm(Filt(X̂n)))

]
≤ C

(
lnn

n

)1/b

where C only depends on a and b.

Under additional technical hypotheses, for any estimator D̂gmn of Dgm(Filt(Xµ)):

lim inf
n→∞

sup
µ∈P(a,b,M)

E
[
db(Dgm(Filt(Xµ)), D̂gmn)

]
≥ C′n−1/b

where C′ is an absolute constant.

For a, b > 0, µ satisfies the (a, b)-standard assumption on its support Xµ if for any
x ∈ Xµ and any r > 0 :

µ(B(x, r)) ≥ min(arb, 1).

P(a, b,M) : set of all the probability measures satisfying the (a, b)-standard as-
sumption on the metric space (M, ρ).

Persistence diagram inference [Chazal et al., 2014]



Confidence sets for persistence diagrams [Fasy et al., 2014]

P
(

Dgm(Filt(K)) ∈ R̂
)
≥ 1− α ??



Confidence sets for persistence diagrams [Fasy et al., 2014]

Using the Hausdorff stability, we can define confidence sets for persistence dia-
grams.

W∞ (Dgm (Filt(K)) ,Dgm (Filt(Xn))) ≤ dH(K,Xn)

it is sufficient to find cn such that

lim sup
n→∞

(
dH(K,Xn) > cn

)
≤ α.

P
(

Dgm(Filt(K)) ∈ R̂
)
≥ 1− α ??



How can be defined the “mean” of a family of persistence diagram ?

• Frechet mean [Turner et al., 2014]
Difficult to compute and no unicity.

• Use an alternative descriptor of persistence : Persistence landscapes
[Bubenik, 2015]



Persistence landscapes [Bubnik, 2015]

b

d
d+b

2

d+b
2

d−b
2

Dgm =
{

( di+bi
2

, di+bi
2

), i ∈ I
} For p = ( b+d

2
, d−b

2
) ∈ Dgm,

Λp(t) =


t− b t ∈ [b, b+d

2
]

d− t t ∈ ( b+d
2
, d]

0 otherwise.
Persistence landscape λ of Dgm:

λ(k, t) = kmax
p∈D

Λp(t), t ∈ R, k ∈ N,

where kmax is k-th largest value in the set.

Stability: For any t ∈ R and any k ∈ N, |λ(k, t)− λ′(k, t)| ≤ db(Dgm,Dgm′).

Xn Dgm(Filt(Xn)) persistence landscape

d−b
2



Subsampling methods for pers. homology [Chazal et al., 2015]

• Let X = {X1, · · · , Xm} sampled from µ.

• λX : corresponding persistence landscape.

• Ψm
µ : the measure induced by µ⊗m on the space of persistence landscapes.

• We consider the point-wise expectations of the (random) persistence land-
scape under this measure:

EΨmµ
[λX(t)], t ∈ [0, T ]

• For Sm1 , . . . , S
m
` some independent samples of size m from µ⊗m, the em-

pirical counterpart of EΨmµ
[λX(t)] is

λm` (t) =
1

`

∑̀
i=1

λSmi (t), for all t ∈ [0, T ],

joint work with F. Chazal, B. Fasy, F. Lecci, A. Rinaldo and L. Wasserman

Risk analysis of λm` and as an estimator of λXµ in the context of (a, b)-standard
measures.



Subsampling methods for pers. homology [Chazal et al., 2015]

Theorem: Let X ∼ µ⊗m and Y ∼ ν⊗m, where µ and ν are two probability
measures on M. For any p ≥ 1 we have∥∥∥EΨmµ

[λX ]− EΨmν
[λY ]

∥∥∥
∞
≤ 2m

1
pWρ,p(µ, ν).

Definition: The p-th Wasserstein distance between two measures µ, ν de-
fined on (M, ρ) is

Wρ,p(µ, ν) =

(
inf
Π

∫
M×M

[ρ(x, y)]pdΠ(x, y)

) 1
p

,

where the infimum is taken over all measures on M ×M with marginals µ
and ν.

Stability of the average landscape:



Subsampling methods for pers. homology [Chazal et al., 2015]

Application: Analysis of accelerometer data.

• topological features carry discriminative information

• no registration/calibration preprocessing step needed

Fred

Fabrizio

Bertrand



Mapper in two slides



MAPPER ( Singh etal., 2007)

filter function

pre-images of the covering
covering

final complex shows the
connexions

[credits : M. Carrière]



MAPPER ( Singh etal., 2007)

Application to NBA players

[credits : AYASDI company]



Concluding remarks

• TDA methods focus on the topological properties (homology / persistent
homology) of a shape.

• TDA methods can be used

– as an “exploratory method”, in particuar when the point cloud is
sampled on (close to) a real geometric object

– as a “feature extraction” procedure, next these extracted features can
be used for learning purposes.

• TDA is an emerging field, at the interface maths, computer sciences, stat

Applications in many fields of sciences ( medecine, biology, dynamic sys-
tems, astronomy, dynamical systems, physics ...)

• TDA methods need to bring together Geometric Inference, Computational
Topology and Geometry, Statistics and Learning methods.



Thank you !
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