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Wealth distribution in an economy

Wealth: total value of a person’s net assets (money, shares,
property, buildings,. . . ) from which any debts are subtracted
Exhibit: Income distribution in the USA

I upper class (≈ 1%) well fitted by
inverse power law (Pareto tail)

I important implications for taxation,
social peace, growth
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Opinion formation

I How are political
opinions formed?

I Sociology tells us
that interpersonal
communication and
opinion leaders play
a big role

I not limited to politics, but more general decision making:
product choice, dissemination of new technologies,...
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Complex systems in economics and sociology

Examples:

I distribution of wealth in a society

I opinion formation (political opinions, product choice, ...)

Common features:

I large number of interacting agents (agent-based models?)

I model of full system not tractable

I quantities of interest are aggregates

I dynamics!

I emergent behaviour

 mathematical tools from kinetic theory/statistical
mechanics
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From micro to macro

Conceptual approach:
I continuous independent variables:

wealth/price/opinion and time
I describe dynamics of system by microscopic interactions

among agents
I perform many interactions (analytically or numerically)
I observe emergent behaviour, patterns in macroscopic

distribution of agents
I derive partial differential equations which

(approximatively) govern the time-evolution of the density

Benefits:
I more (analytically and numerically) tractable model
I understanding role of parameters in the microscopic

interactions for emergent behaviour
I PDE: nonlinear, anisotropic, nonlocal, degenerate
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Wealth distribution: quantity of interest

I We are interested in the large-wealth behavior of the
distribution since it determines a posteriori if the model
results fits real data

I let f(v) be probability density function of agents with
wealth v, and consider the commulative density

F (w) =

∫ ∞
w

f(v) dv

I over 100 years ago, the Italian economist Vilfredo Pareto
first quantified the large-wealth behavior to follow a
power-law distribution

I i.e. F (w) ∼ w−µ for w large
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Kinetic models of simple markets

Idea: model agents in simple market as colliding molecules in a
Boltzmann gas:

Economic system Particle dynamics

agents molecules
agent’s wealth particle momentum
mean wealth total momentum
transactions collisions

However, complete analogy fails:

I no debts allowed → particle momenta non-negative

I risky investments → collision kernel with randomness

I individual agent’s preferences → particles distinguishable
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Goals

I kinetic model of a simple economy to describe evolution
of the macroscopic wealth distribution by means of
microscopic interactions (trades) among individuals
(agents)

I we will consider binary interactions of the form

v∗ = p1v + q1w, w∗ = p2v + q2w

I wealth after trade non-negative (no debts)→ v∗, w∗ ≥ 0

I pi, qi can be given constants or random quantities

I pi, qi should be nonnegative

Benchmark: steady states of good model should show Pareto tail
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Model of Cordier, Pareschi & Toscani (2005)

→ w/w∗, v/v∗ denote agents’ wealths before/after trade
→ single, fixed saving propensity γ ∈ (0, 1)

Agent B:
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→ binary trade is characterized by

v∗ = γv + (1− γ)w + ηv

w∗ = γw + (1− γ)v + η̃w

where risks of the market are described by η and η̃,
random variables with same distribution and zero mean
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Boltzmann-type equation

Paradigm (∼1985)

Wealth distribution function f(w, t) satisfies a homogeneous
Boltzmann equation on R+

∂tf = Q(f, f), f(w, 0) = f0(w).

Weak form: For all smooth test functions φ consider

d
dt

∫
R+
f(w, t)φ(w) dw =

∫
R+
Q(f, f)φ(w) dw,

where∫
R+
Q(f, f)φ(w) dw

= 1
2

〈 ∫
R+

∫
R+

[φ(w∗)+φ(v∗)−φ(w)−φ(v)]f(w)f(v) dwdv
〉

Interpretation: Pre-trade v, w change into post-trade v∗, w∗

→ to define a specific model, prescribe transitions (v, w) (v∗, w∗)
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Boltzmann equation: Fourier version

Existence of solutions to Boltzmann equation follows from
results for the elastic Kac model

Idea: Boltzmann-like equation with constant kernel easily
studied using Fourier transform (Bobylev, 1988)

Fourier version

∂f̂(t; ξ)

∂t
= Q̂

(
f̂ , f̂

)
(t; ξ)

can be written as

∂f̂(t; ξ)

∂t
=

1

2

〈
f̂(p1ξ)f̂(q1ξ) + f̂(p2ξ)f̂(q2ξ)

〉
− f̂(t; ξ)
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Unified approach

[B.D./Matthes/Toscani ’08, Matthes/Toscani ’08]
Use Fourier metric

ds[f1, f2] = sup
ξ

[|ξ|−s|f̂1(ξ)− f̂2(ξ)|], s > 0

Theorem

Let f1(t) and f2(t) be two solutions of the Boltzmann
equation, corresponding to initial values with same mean.
Let s ≥ 1 be such that ds[f1,0, f2,0] is finite.
Then for all t ≥ 0

ds[f1(t), f2(t)] ≤ exp

[(
1

2

( 2∑
i=1

〈psi + qsi 〉
)
− 1

)
t

]
ds[f1,0, f2,0].
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Characteristic function

Introduce the characteristic function

S(s) =
1

2

( 2∑
i=1

〈psi + qsi 〉
)
− 1

I obviously S(0) = 1

I S(1) = 0 because of the conservation property

I sign of S(s) is related to number of moments of solution
which remain uniformly bounded in time

I Large-time behavior of solution depends on sign of S(s)
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Conclusions for CPT (2005) model

Mixing parameters are given by

p1 = γ + η, q1 = 1− γ
p2 = 1− γ, q2 = γ + η̃

This implies conservation in the mean, i.e. 〈v∗ + w∗〉 = v + w.

Need to evaluate

S(s) = (1− γ)s − 1 + 1
2
〈(γ + η)s + (γ + η̃)s〉
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Conclusions for CPT model: specific example

I Let η only assume values ±µ, with probability 1
2

each,
where 0 ≤ µ ≤ γ

I by varying γ and µ one encounters variety of possible
outcomes

I if γ + µ ≤ 1, trade is pointwise conservative
→ all moments are finite (exponential tail)

I if γ + µ > 1, evaluate

S(s) = (1− γ)s − 1 +
1

2
(γ + µ)s +

1

2
(γ − µ)s
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Conclusions for CPT model: specific example

One obtains the following classification for f∞

µ

γ

I Zone I: exluded by µ ≤ γ
I Zone II: Socialism (exponential tails)
I Zone III: Capitalism (Pareto tails)
I Zone IV: Plutocracy (Dirac distribution)
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Numerical example for CPT model

Kinetic Monte Carlo simulation with N = 5000 agents

I each agent starts with unit wealth
I uniform saving propensity γ ≡ 0.7 and η = ±0.5
I agents are randomly selected for trade events
I one time step = N collisions

. Pareto tail w−s̄,

. s̄ ≈ 3.7 (S(s̄) = 0)
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Kinetic models for opinion formation: literature

I Toscani (2006): opinion variable w ∈ I = [−1, 1]
I Boudin/Salvarani (2008): opinion variable
w ∈ Ip = [−1, 1]p

I Bertotti/Delitala (2009): opinion leadership, discrete
model

I B.D./Markowich/Pietschmann/Wolfram (2009): opinion
leadership, two species (PRSA)

I Motsch/Tadmor (2014), Heterophilious dynamics
enhances consensus (SIAM Review)

I Pareschi/Toscani (2014): Book ‘Interacting Multiagent
Systems’

I ...

Connections to swarming/flocking models (Barbaro, Bertozzi,
Cañizo, Carrillo, D’Orsogna, Slepčev,...) and ‘sociophysics’
literature (Galam et al., Hegselmann/Krause,...)
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Opinion formation: Toscani (2006) model

I describe evolution of opinion distribution by microscopic
interactions among individuals

I society develops a certain macroscopic opinion
distribution

I opinion: continuous variable w ∈ I = [−1, 1], where ±1
represent extreme opinions

Two individuals with pre-interaction opinion v and w meet
→ post-interaction opinions v∗ and w∗ are given by

v∗ = v − γP (|v − w|)(v − w) + η1D(v),

w∗ = w − γP (|w − v|)(w − v) + η2D(w).

γ ∈ (0, 1
2
) : constant compromise parameter

η1,2 : random variables with mean zero and variance σ2

modeling self-thinking through an exogenous, global access to
information, e.g. through the press, television or internet.
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Homogeneous Boltzmann-like equation

Homogeneous society [Toscani ’06]
 Boltzmann-like equation for the opinion distribution

function f = f(w, t)

∂

∂t
f(w, t) =

1

τ
Q(f, f)(w)

τ : relaxation time
Collision operator in weak form:∫
I
Q(f, f)(w)φ(w) dw

=
1

2

〈∫
I2

(
φ(w∗) + φ(v∗)− φ(w)− φ(v)

)
f(v)f(w) dv dw

〉
for all smooth functions φ(w)
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Opinion leadership in sociology

I sociological concept trying to explain formation of
opinions in a society

I going back to Lazarsfeld et al. (1944) studying US
presidential elections 1940

I found out interpersonal communication to be much more
influential than direct media effects

I two-step flow of communication: opinion leaders (active
media users) select, interpret, modify, facilitate, and
finally transmit information to less active parts of the
population
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Opinion leader characteristics

Typical opinion leader characteristics are

I high confidence

I high self-esteem

I strong need to be unique (public individuation)

I socially active, highly connected (scale-free network)

I ability to withstand criticism

Although different, not easy to distinguish from followers

I still related to their followers

I opinion leadership is specific to a subject and can change
over time
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Kinetic model with opinion leaders

[B.D./Markowich/Pietschmann/Wolfram, ’09]
Inhomogeneous society consisting of two groups
I opinion leaders (highly self-confident, assertive, able to

withstand criticism)
I followers

If two individuals from the same group meet (i = 1, 2)

v∗ = v − γiPi(|v − w|)(v − w) + ηi1Di(v)

w∗ = w − γiPi(|w − v|)(w − v) + ηi2Di(w)

Follower with opinion v meets opinion leader with opinion w

v∗ = v − γ3P3(|v − w|)(v − w) + η11D1(v)

w∗ = w

γk ∈ (0, 1
2
) : compromise parameters, which control the

‘speed’ of attraction of two different opinions
ηij : random variables with variance σ2

ij and zero mean
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Boltzmann system

Distribution functions fi = fi(w, t) obey system of two
Boltzmann-like equations, given by

∂

∂t
fi(w, t) =

n∑
j=1

1

τij
Qij(fi, fj)(w).

τij : relaxation times
Collision operators in weak form:∫
I
Qij(fi, fj)(w)φ(w) dw

=
1

2

〈∫
I2

(
φ(w∗) + φ(v∗)− φ(w)− φ(v)

)
fi(v)fj(w) dv dw

〉
for all smooth functions φ(w)
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Fokker-Planck system

Idea: Derive macroscopic approximation
For γ � 1, τ = γt, let gi(w, τ) = fi(w, t).
Limit: γ, σij → 0 with λij = σ2

ij/γ fixed
→ (scaled) densities converge to gi(w, τ), which solve

∂

∂τ
g1(w, τ) =

∂

∂w

((
1

τ11
K1(w, τ) +

1

2τ12
K3(w, τ)

)
g1(w, τ)

)

+

(
λ11M1

2τ11
+
λ12M2

4τ12

)
∂2

∂w2

(
D2

1(w)g1(w, τ)
)

∂

∂τ
g2(w, τ) =

∂

∂w

(
1

τ22
K2(w, τ)g2(w, τ)

)
+
λ22M2

2τ22

∂2

∂w2

(
D2

2(w)g2(w, τ)
)
,

with nonlocal drift operators

Ki(w, τ) =
∫
I Pi(|w − v|)(w − v)gi(v, τ) dv for i = 1, 2

K3(w, τ) =
∫
I P3(|w − v|)(w − v)g2(v, τ) dv

→ steady states can be found analytically (for P ≡ 1)
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Numerical results

Pi(|v − w|) = 1{|v−w|≤ri}, ri = 0.5

D1(w) = D2(w) = D(w) := (1− w2)
2
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Understanding Carinthia

I Carinthia is the southernmost state of Austria

I since 1999 elections the right-wing Freedom Party of
Austria (FPÖ) became strongest party and continually
improved, holding almost 45 % of the votes in 2008

I outcome strongly influenced by
popularity of party leader Haider

I being considered populistic,
extreme-right or even antisemitic by
many

I strongly acclaimed by his followers

I success less founded on political
ideas than on authority of Haider
himself
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Example: Carinthia state elections

Let’s illustrate the behavior of our model under extreme
conditions, like in Carinthia.

Table: Results of the state elections in Carinthia

Grüne SPÖ ÖVP FPÖ BZÖ
2004 6.7% 38.4 % 11.6 % 42.5 % —
2009 5.2% 28.8 % 16.8 % 3.8 % 44.9 %

I initial distribution of normal people: weighted sum of
Gaussians according to 2004 elections

I opinion leaders associated with the different parties with
weights according to their influence

I other parameters

α = 1.5, λ = 3× 10−3, r1 = r2 = 0.2, r3 = 0.45,

τ11 = τ12 = 1, τ22 = 10, σ1 = 0.1, σ2 = 0.05.
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Numerical results
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Towards an inhomogeneous model

[B.D./Wolfram, ’15]
More realistic models should depend on additional,
independent variables, e.g.
I leadership ‘strength’
I space
I ...

 inhomogeneous Boltzmann-type equation for f = f(x,w, t)

∂

∂t
f + divx(Φ(x,w)f) =

1

τ
Q(f, f)

→ choice of the field Φ = Φ(x,w) which describes the opinion
flux plays a crucial role

→ in contrast to the physical situation where Φ(w) = w,
suitable choices need to be made

→ example: inhomogeneous Boltzmann-type equation
modelling political segregation in ‘The Big Sort’
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Political segregation: The Big Sort

The Big Sort (Bishop/Cushion, 2008):
→ clustering of individuals who share similar political opinions
→ observed in USA over the last decades

I acclaimed in many newspapers and magazines

I former president Bill Clinton urged audiences to read the
book

I but claims also met opposition from political sociologists
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Inhomogeneous model II: The Big Sort

Landslide counties: counties in which either candidate won or
lost by 20 percentage points or more

1976 2004

→ number of landslide counties has doubled
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Inhomogeneous Boltzmann-type equation

opinion variable w ∈ [−1, 1]
additional variable: position on map x ∈ Ω ⊂ R2

opinion distribution function f = f(x,w, t)
supporters of the parties given by marginals

B(x, t) =

∫ 0

−1

f(x,w, t) dw, R(x, t) =

∫ 1

0

f(x,w, t) dw

opinion dynamics (∼ Toscani, 2006):

v∗ = v − γK(|x− y|)P (|v − w|)(v − w) + η1D(v)

w∗ = w − γK(|y − x|)P (|v − w|)(w − v) + η2D(w)

We are lead to study

∂

∂t
f + divx(Φ(x,w)f) =

1

τ
Q(f, f).
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Fokker-Planck limit

Full inhomogeneous Boltzmann-type equation difficult to
handle
Idea: Derive macroscopic approximation

For t′ = γt, x′ = γx let g(x′, w, t′) = f(x,w, t).

Limit: γ, σ → 0 with λ = σ2/γ fixed

→ (scaled) density converges to g(x,w, t), which solves

∂

∂t
g(x,w, t) + divx(Φ(x,w)g(x,w, t))

=
∂

∂w

(
1

τ
K(x,w, t)g(x,w, t)

)
+
λM(x)

2τ

∂2

∂w2

(
D2(w)g(x,w, t)

)
with nonlocal drift operator
K(x,w, t) =

∫
I P (|w − v|)(w − v)g(x, v, t) dv

and mass M(x) =
∫
g(x, v, t) dv
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Numerical example: The Big Sort in Arizona

Results of the US presidential elections in the state of Arizona:

1992 1996 2000 2004

Colour intensities reflect election outcome in percent:

I dark blue (red) to Democrats (Republicans) 60–70%

I medium blue (red) to Democrats (Republicans) 50–60%

I light blue (red) to Democrats (Republicans) 40–50%
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Numerical results: The Big Sort in Arizona

Initial distribution: f(x,w, 0) proportional to 1992 elections
Potential Φ(x,w) = sgn(w)∇C(x)(1− w2)γ is obtained from
1996 election results by solving

C(x) + ε∆C(x) = f1996(x)

Solve the Fokker-Planck on Ω ⊂ R2 corresponding to the state
Arizona, divided into 15 electoral counties:

Domain Ω Potential C(x)
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Numerical results: The Big Sort in Arizona

Simulation results:

Democrats Republicans

Election results 2004

→ patterns of the electoral results
from 2004 are reproduced fairly well,
except for the second county from the
right in the Northeast (Navajo)
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Summary and perspectives

Summary:
I complex systems in economics and sociology
 Boltzmann-type equations

I microscopic dynamics
I emergent behaviour
I examples:

I wealth distribution
I opinion dynamics under opinion leadership
I political segregation: ‘The Big Sort’ in USA

Perspectives:
I better understanding of input data (micro/macro)
I asymptotic behaviour of moments
I optimal control
I optimal strategies, mean-field games
I connection to graph-based approaches
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