Kinetic equations modelling complex systems in economics and sociology

Bertram Düring

Department of Mathematics

Joint work with

P. Markowich, D. Matthes, J.-F. Pietschmann, G. Toscani, M.-T. Wolfram

Wealth distribution in an economy

Wealth: total value of a person's net assets (money, shares, property, buildings,...) from which any debts are subtracted Exhibit: Income distribution in the USA

- ► upper class (≈ 1%) well fitted by inverse power law (Pareto tail)
- important implications for taxation, social peace, growth

Opinion formation

not limited to politics, but more general decision making: product choice, dissemination of new technologies,...

Complex systems in economics and sociology

Examples:

- distribution of wealth in a society
- opinion formation (political opinions, product choice, ...)

Common features:

- large number of interacting agents (agent-based models?)
- model of full system not tractable
- quantities of interest are aggregates
- dynamics!
- emergent behaviour

 \leadsto mathematical tools from kinetic theory/statistical mechanics

From micro to macro

Conceptual approach:

- continuous independent variables: wealth/price/opinion and time
- describe dynamics of system by microscopic interactions among agents
- perform many interactions (analytically or numerically)
- observe emergent behaviour, patterns in macroscopic distribution of agents
- derive partial differential equations which (approximatively) govern the time-evolution of the density Benefits:
 - more (analytically and numerically) tractable model
 - understanding role of parameters in the microscopic interactions for emergent behaviour
 - > PDE: nonlinear, anisotropic, nonlocal, degenerate

Wealth distribution: quantity of interest

- We are interested in the large-wealth behavior of the distribution since it determines a posteriori if the model results fits real data
- let f(v) be probability density function of agents with wealth v, and consider the commulative density

$$F(w) = \int_{w}^{\infty} f(v) \, dv$$

- over 100 years ago, the Italian economist Vilfredo Pareto first quantified the large-wealth behavior to follow a power-law distribution
- \blacktriangleright i.e. $F(w) \sim w^{-\mu}$ for w large

Kinetic models of simple markets

Idea: model agents in simple market as colliding molecules in a Boltzmann gas:

Economic system	Particle dynamics	
agents	molecules	
agent's wealth	particle momentum	
mean wealth	total momentum	
transactions	collisions	

However, complete analogy fails:

- \blacktriangleright no debts allowed \rightarrow particle momenta non-negative
- ▶ risky investments → collision kernel with randomness
- ▶ individual agent's preferences → particles distinguishable

Goals

- kinetic model of a simple economy to describe evolution of the *macroscopic* wealth distribution by means of *microscopic* interactions (trades) among individuals (agents)
- we will consider binary interactions of the form

$$v^* = p_1 v + q_1 w, \qquad w^* = p_2 v + q_2 w$$

- ▶ wealth after trade non-negative (no debts) → $v^*, w^* \ge 0$
- p_i, q_i can be given constants or random quantities
- p_i, q_i should be nonnegative

Benchmark: steady states of good model should show Pareto tail

Model of Cordier, Pareschi & Toscani (2005)

 $\to w/w^*,\,v/v^*$ denote agents' wealths before/after trade \to single, fixed saving propensity $\gamma\in(0,1)$

 \rightarrow binary trade is characterized by

$$v^* = \gamma v + (1 - \gamma)w + \eta v$$
$$w^* = \gamma w + (1 - \gamma)v + \tilde{\eta}w$$

where risks of the market are described by η and $\tilde{\eta}$, random variables with same distribution and zero mean

Boltzmann-type equation

Paradigm (\sim 1985)

Wealth distribution function f(w,t) satisfies a homogeneous Boltzmann equation on \mathbb{R}_+

 $\partial_t f = \mathcal{Q}(f, f), \quad f(w, 0) = f_0(w).$

Weak form: For all smooth test functions ϕ consider

$$\frac{d}{dt}\int_{\mathbb{R}_+} f(w,t)\phi(w)\,dw = \int_{\mathbb{R}_+} \mathcal{Q}(f,f)\phi(w)\,dw,$$

where

$$\begin{split} &\int_{\mathbb{R}_+} \mathcal{Q}(f,f)\phi(w)\,dw \\ &= \frac{1}{2} \Big\langle \int_{\mathbb{R}_+} \int_{\mathbb{R}_+} [\phi(w^*) + \phi(v^*) - \phi(w) - \phi(v)]f(w)f(v)\,dwdv \Big\rangle \\ &\text{Interpretation: Pre-trade } v,w \text{ change into post-trade } v^*,w^* \\ &\to \text{to define a specific model, prescribe transitions } (v,w) \rightsquigarrow (v^*,w^*) \end{split}$$

Boltzmann equation: Fourier version

Existence of solutions to Boltzmann equation follows from results for the elastic Kac model

Idea: Boltzmann-like equation with constant kernel easily studied using *Fourier transform* (Bobylev, 1988)

Fourier version

$$\frac{\partial \widehat{f}(t;\xi)}{\partial t} = \widehat{Q}\left(\widehat{f},\widehat{f}\right)(t;\xi)$$

can be written as

$$\frac{\partial \widehat{f}(t;\xi)}{\partial t} = \frac{1}{2} \left\langle \widehat{f}(p_1\xi)\widehat{f}(q_1\xi) + \widehat{f}(p_2\xi)\widehat{f}(q_2\xi) \right\rangle - \widehat{f}(t;\xi)$$

Unified approach

[B.D./Matthes/Toscani '08, Matthes/Toscani '08] Use Fourier metric

$$d_s[f_1, f_2] = \sup_{\xi} [|\xi|^{-s} |\widehat{f}_1(\xi) - \widehat{f}_2(\xi)|], \quad s > 0$$

Theorem

Let $f_1(t)$ and $f_2(t)$ be two solutions of the Boltzmann equation, corresponding to initial values with same mean. Let $s \ge 1$ be such that $d_s[f_{1,0}, f_{2,0}]$ is finite. Then for all $t \ge 0$

$$d_s[f_1(t), f_2(t)] \le \exp\left[\left(\frac{1}{2}\left(\sum_{i=1}^2 \langle p_i^s + q_i^s \rangle\right) - 1\right)t\right] d_s[f_{1,0}, f_{2,0}].$$

Characteristic function

Introduce the characteristic function

$$\mathcal{S}(s) = \frac{1}{2} \Big(\sum_{i=1}^{2} \langle p_i^s + q_i^s \rangle \Big) - 1$$

- obviously $\mathcal{S}(0) = 1$
- S(1) = 0 because of the conservation property
- ► sign of S(s) is related to number of moments of solution which remain uniformly bounded in time
- Large-time behavior of solution depends on sign of $\mathcal{S}(s)$

Conclusions for CPT (2005) model

Mixing parameters are given by

$$p_1 = \gamma + \eta, \qquad q_1 = 1 - \gamma \\ p_2 = 1 - \gamma, \qquad q_2 = \gamma + \tilde{\eta}$$

This implies conservation in the mean, i.e. $\langle v^* + w^* \rangle = v + w$.

Need to evaluate

$$\mathcal{S}(s) = (1-\gamma)^s - 1 + \frac{1}{2} \langle (\gamma + \eta)^s + (\gamma + \tilde{\eta})^s \rangle$$

Conclusions for CPT model: specific example

- \blacktriangleright Let η only assume values $\pm \mu,$ with probability $\frac{1}{2}$ each, where $0 \leq \mu \leq \gamma$
- by varying γ and μ one encounters variety of possible outcomes
- if γ + µ ≤ 1, trade is pointwise conservative
 → all moments are finite (exponential tail)
- if $\gamma + \mu > 1$, evaluate

$$\mathcal{S}(s) = (1 - \gamma)^s - 1 + \frac{1}{2}(\gamma + \mu)^s + \frac{1}{2}(\gamma - \mu)^s$$

Introduction Wealth distribution Opinion formation Conclusion

Conclusions for CPT model: specific example

One obtains the following classification for f_∞

- \blacktriangleright Zone I: exluded by $\mu \leq \gamma$
- Zone II: Socialism (exponential tails)
- Zone III: Capitalism (Pareto tails)
- Zone IV: Plutocracy (Dirac distribution)

Numerical example for CPT model

Kinetic Monte Carlo simulation with N = 5000 agents

- each agent starts with unit wealth
- uniform saving propensity $\gamma \equiv 0.7$ and $\eta = \pm 0.5$
- agents are randomly selected for trade events
- one time step = N collisions

...

Kinetic models for opinion formation: literature

- ▶ Toscani (2006): opinion variable $w \in \mathcal{I} = [-1, 1]$
- ▶ Boudin/Salvarani (2008): opinion variable $w \in \mathcal{I}^p = [-1, 1]^p$
- Bertotti/Delitala (2009): opinion leadership, discrete model
- B.D./Markowich/Pietschmann/Wolfram (2009): opinion leadership, two species (PRSA)
- Motsch/Tadmor (2014), Heterophilious dynamics enhances consensus (SIAM Review)
- Pareschi/Toscani (2014): Book 'Interacting Multiagent Systems'

Connections to swarming/flocking models (Barbaro, Bertozzi, Cañizo, Carrillo, D'Orsogna, Slepčev,...) and 'sociophysics' literature (Galam *et al.*, Hegselmann/Krause,...)

Opinion formation: Toscani (2006) model

- describe evolution of opinion distribution by microscopic interactions among individuals
- society develops a certain macroscopic opinion distribution
- ▶ opinion: continuous variable $w \in \mathcal{I} = [-1, 1]$, where ± 1 represent extreme opinions

Two individuals with pre-interaction opinion v and w meet \rightarrow post-interaction opinions v^* and w^* are given by

 $v^* = v - \gamma P(|v - w|)(v - w) + \eta_1 D(v),$ $w^* = w - \gamma P(|w - v|)(w - v) + \eta_2 D(w).$

 $\gamma \in (0, \frac{1}{2})$: constant compromise parameter $\eta_{1,2}$: random variables with mean zero and variance σ^2 modeling self-thinking through an exogenous, global access to information, e.g. through the press, television or internet.

Homogeneous Boltzmann-like equation

Homogeneous society [Toscani '06]

 \rightsquigarrow Boltzmann-like equation for the opinion distribution function f=f(w,t)

$$\frac{\partial}{\partial t}f(w,t) = \frac{1}{\tau}\mathcal{Q}(f,f)(w)$$

 τ : relaxation time Collision operator in weak form:

$$\int_{\mathcal{I}} \mathcal{Q}(f,f)(w)\phi(w) \, dw$$
$$= \frac{1}{2} \left\langle \int_{\mathcal{I}^2} (\phi(w^*) + \phi(v^*) - \phi(w) - \phi(v)) f(v) f(w) \, dv \, dw \right\rangle$$

for all smooth functions $\phi(w)$

Opinion leadership in sociology

- sociological concept trying to explain formation of opinions in a society
- going back to Lazarsfeld *et al.* (1944) studying US presidential elections 1940
- found out interpersonal communication to be much more influential than direct media effects
- two-step flow of communication: opinion leaders (active media users) select, interpret, modify, facilitate, and finally transmit information to less active parts of the population

Opinion leader characteristics

Typical opinion leader characteristics are

- high confidence
- high self-esteem
- strong need to be unique (public individuation)
- socially active, highly connected (scale-free network)
- ability to withstand criticism

Although different, not easy to distinguish from followers

- still related to their followers
- opinion leadership is specific to a subject and can change over time

Kinetic model with opinion leaders

[B.D./Markowich/Pietschmann/Wolfram, '09]

Inhomogeneous society consisting of two groups

- opinion leaders (highly self-confident, assertive, able to withstand criticism)
- followers

If two individuals from the same group meet (i=1,2)

$$v^* = v - \gamma_i P_i(|v - w|)(v - w) + \eta_{i1} D_i(v)$$

$$w^* = w - \gamma_i P_i(|w - v|)(w - v) + \eta_{i2} D_i(w)$$

Follower with opinion v meets opinion leader with opinion w

$$v^* = v - \gamma_3 P_3(|v - w|)(v - w) + \eta_{11} D_1(v)$$

$$w^* = w$$

 $\gamma_k \in (0, \frac{1}{2})$: compromise parameters, which control the 'speed' of attraction of two different opinions η_{ij} : random variables with variance σ_{ij}^2 and zero mean

Boltzmann system

Distribution functions $f_i = f_i(w, t)$ obey system of two Boltzmann-like equations, given by

$$\frac{\partial}{\partial t}f_i(w,t) = \sum_{j=1}^n \frac{1}{\tau_{ij}}\mathcal{Q}_{ij}(f_i,f_j)(w).$$

 τ_{ij} : relaxation times Collision operators in weak form:

$$\int_{\mathcal{I}} \mathcal{Q}_{ij}(f_i, f_j)(w) \phi(w) \, dw$$

= $\frac{1}{2} \left\langle \int_{\mathcal{I}^2} (\phi(w^*) + \phi(v^*) - \phi(w) - \phi(v)) f_i(v) f_j(w) \, dv \, dw \right\rangle$

for all smooth functions $\phi(w)$

Fokker-Planck system

Idea: Derive macroscopic approximation For $\gamma \ll 1$, $\tau = \gamma t$, let $q_i(w, \tau) = f_i(w, t)$. Limit: $\gamma, \sigma_{ij} \to 0$ with $\lambda_{ij} = \sigma_{ij}^2 / \gamma$ fixed \rightarrow (scaled) densities converge to $g_i(w,\tau)$, which solve $\frac{\partial}{\partial \tau} g_1(w,\tau) = \frac{\partial}{\partial w} \left(\left(\frac{1}{\tau_{11}} \mathcal{K}_1(w,\tau) + \frac{1}{2\tau_{12}} \mathcal{K}_3(w,\tau) \right) g_1(w,\tau) \right)$ $+\left(\frac{\lambda_{11}M_1}{2\tau_{11}}+\frac{\lambda_{12}M_2}{4\tau_{12}}\right)\frac{\partial^2}{\partial w^2}\left(D_1^2(w)g_1(w,\tau)\right)$ $\frac{\partial}{\partial \tau} g_2(w,\tau) = \frac{\partial}{\partial w} \left(\frac{1}{\tau_{22}} \mathcal{K}_2(w,\tau) g_2(w,\tau) \right) + \frac{\lambda_{22} M_2}{2\tau_{22}} \frac{\partial^2}{\partial w^2} \left(D_2^2(w) g_2(w,\tau) \right)$ with nonlocal drift operators

 $\begin{aligned} \mathcal{K}_i(w,\tau) &= \int_{\mathcal{I}} P_i(|w-v|)(w-v)g_i(v,\tau)\,dv \quad \text{for } i=1,2\\ \mathcal{K}_3(w,\tau) &= \int_{\mathcal{I}} P_3(|w-v|)(w-v)g_2(v,\tau)\,dv \end{aligned}$

Numerical results

 $P_i(|v - w|) = \mathbf{1}_{\{|v - w| \le r_i\}}, r_i = 0.5$ $D_1(w) = D_2(w) = D(w) := (1 - w^2)^2$

Understanding Carinthia

- Carinthia is the southernmost state of Austria
- since 1999 elections the right-wing Freedom Party of Austria (FPÖ) became strongest party and continually improved, holding almost 45 % of the votes in 2008
- outcome strongly influenced by popularity of party leader Haider
- being considered populistic, extreme-right or even antisemitic by many
- strongly acclaimed by his followers
- success less founded on political ideas than on authority of Haider himself

Example: Carinthia state elections

Let's illustrate the behavior of our model under extreme conditions, like in Carinthia.

Table: Results of the state elections in Carinthia

	Grüne	SPÖ	ÖVP	FPÖ	ΒZÖ
2004	6.7%	38.4 %	11.6 %	42.5 %	
2009	5.2%	28.8 %	16.8 %	3.8 %	44.9 %

- initial distribution of normal people: weighted sum of Gaussians according to 2004 elections
- opinion leaders associated with the different parties with weights according to their influence
- other parameters

$$\alpha = 1.5, \quad \lambda = 3 \times 10^{-3}, \quad r_1 = r_2 = 0.2, \quad r_3 = 0.45,$$

 $\tau_{11} = \tau_{12} = 1, \quad \tau_{22} = 10, \quad \sigma_1 = 0.1, \quad \sigma_2 = 0.05.$

Numerical results

Towards an inhomogeneous model

 $[\mathsf{B}.\mathsf{D}./\mathsf{Wolfram},\ '15]$

More realistic models should depend on additional, independent variables, e.g.

- leadership 'strength'
- space
- ...

 \rightarrow inhomogeneous Boltzmann-type equation for f = f(x, w, t)

$$\frac{\partial}{\partial t}f + \operatorname{div}_x(\Phi(x, w)f) = \frac{1}{\tau}\mathcal{Q}(f, f)$$

- \rightarrow choice of the field $\Phi=\Phi(x,w)$ which describes the opinion flux plays a crucial role
- \rightarrow in contrast to the physical situation where $\Phi(w)=w,$ suitable choices need to be made
- \rightarrow example: inhomogeneous Boltzmann-type equation modelling political segregation in 'The Big Sort'

Political segregation: The Big Sort

The Big Sort (Bishop/Cushion, 2008):

- \rightarrow clustering of individuals who share similar political opinions
- \rightarrow observed in USA over the last decades

- acclaimed in many newspapers and magazines
- former president Bill Clinton urged audiences to read the book
- but claims also met opposition from political sociologists

Inhomogeneous model II: The Big Sort

Landslide counties: counties in which either candidate won or lost by 20 percentage points or more

1976

2004

 \rightarrow number of landslide counties has doubled

Inhomogeneous Boltzmann-type equation

opinion variable $w \in [-1, 1]$ additional variable: position on map $x \in \Omega \subset \mathbb{R}^2$ opinion distribution function f = f(x, w, t)supporters of the parties given by marginals

$$B(x,t) = \int_{-1}^{0} f(x,w,t) \, dw, \quad R(x,t) = \int_{0}^{1} f(x,w,t) \, dw$$

opinion dynamics (\sim Toscani, 2006):

 $v^* = v - \gamma K(|x - y|) P(|v - w|)(v - w) + \eta_1 D(v)$ $w^* = w - \gamma K(|y - x|) P(|v - w|)(w - v) + \eta_2 D(w)$

We are lead to study

$$\frac{\partial}{\partial t}f + \operatorname{div}_x(\Phi(x, w)f) = \frac{1}{\tau}\mathcal{Q}(f, f).$$

Fokker-Planck limit

Full inhomogeneous Boltzmann-type equation difficult to handle

Idea: Derive macroscopic approximation

For
$$t' = \gamma t$$
, $x' = \gamma x$ let $g(x', w, t') = f(x, w, t)$.

Limit:
$$\gamma, \sigma \to 0$$
 with $\lambda = \sigma^2/\gamma$ fixed

 \rightarrow (scaled) density converges to g(x,w,t), which solves

$$\frac{\partial}{\partial t}g(x,w,t) + \operatorname{div}_{x}(\Phi(x,w)g(x,w,t))$$
$$= \frac{\partial}{\partial w}\left(\frac{1}{\tau}\mathcal{K}(x,w,t)g(x,w,t)\right) + \frac{\lambda M(x)}{2\tau}\frac{\partial^{2}}{\partial w^{2}}\left(D^{2}(w)g(x,w,t)\right)$$

with nonlocal drift operator $\mathcal{K}(x,w,t) = \int_{\mathcal{I}} P(|w-v|)(w-v)g(x,v,t)\,dv$ and mass $M(x) = \int g(x,v,t)\,dv$

Numerical example: The Big Sort in Arizona

Results of the US presidential elections in the state of Arizona:

Colour intensities reflect election outcome in percent:

- ▶ dark blue (red) to Democrats (Republicans) 60–70%
- medium blue (red) to Democrats (Republicans) 50-60%
- ▶ light blue (red) to Democrats (Republicans) 40–50%

Numerical results: The Big Sort in Arizona

Initial distribution: f(x, w, 0) proportional to 1992 elections Potential $\Phi(x, w) = \operatorname{sgn}(w)\nabla C(x)(1-w^2)^{\gamma}$ is obtained from 1996 election results by solving

$$C(x) + \varepsilon \Delta C(x) = f_{1996}(x)$$

Solve the Fokker-Planck on $\Omega\subset\mathbb{R}^2$ corresponding to the state Arizona, divided into 15 electoral counties:

Introduction Wealth distribution Opinion formation Conclusion

Numerical results: The Big Sort in Arizona

Simulation results:

 \rightarrow patterns of the electoral results from 2004 are reproduced fairly well, except for the second county from the right in the Northeast (Navajo)

Election results 2004

Summary and perspectives

Summary:

- complex systems in economics and sociology
 Boltzmann-type equations
- microscopic dynamics
- emergent behaviour
- examples:
 - wealth distribution
 - opinion dynamics under opinion leadership
 - political segregation: 'The Big Sort' in USA

Perspectives:

- better understanding of input data (micro/macro)
- asymptotic behaviour of moments
- optimal control
- optimal strategies, mean-field games
- connection to graph-based approaches