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Current State of Play

Data Everywhere

In every realm of human experience, growing in volume.

Statisticians Deal With Data

Systematic development of mathematical statistics over more than
a century. But range of models arguably somewhat limited,

What Is New For Mathematics?

Interfacing existing models with data, and developing new models
from data, provide intellectual challenges that will define much of
the development of mathematics in the next century.

Where Are We Now?

Mathematics in relation to data is in the same state that it was in
relation to analysis at the time of Fourier. Interesting times!
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Prototypical Problem Areas

Physics (Newton’s Laws, Quantum Mechanics).
Strong belief in model.
Pencil-paper models – centuries old.

Biology (Epidemics, Neuroscience, Healthcare).
Models are (good) cartoons.
Social Sciences (Crowds, Economics, Voting).
Models are (often weak) cartoons.
Commerce (Amazon, Google, Netflix).
Models in their infancy.
Models are being machine learnt.
Modeling principles are emerging.

All Have Vast Amounts of Data!
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Issues

How to weight quality of model versus quality of data?

Pencil/paper model or machine-learnt model?

Linking pencil/paper and machine-learning?

Structure of data: time-ordered/all at once; how/low
frequency; spatial structure; model-data link function?

How to deal with uncertainty in model and in data?

What extra do we learn from the data?
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Bayes Theorem (Picture)

Model

G : X → RJ , X separable Banach space.
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Bayes Theorem (Mathematics)

Prior

Probabilistic information about u before data is collected: P(du).

Likelihood

Since y = G(u) + η, if η ∼ N(0, Γ), then y |u ∼ N(G(u), Γ). The
model-data misfit Φ is the negative log-likelihood:

P(y |u) ∝ exp
(
−Φ(u; y)

)
, φ(u; y) =

1

2

∣∣∣Γ−1/2
(
y − G(u)

)∣∣∣2.
Posterior

Probabilistic information about u after data is collected:

P(du|y) ∝ exp
(
−Φ(u; y)

)
P(du).
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Algorithms For Bayesian Inversion

We wish to get information about the structure of the posterior
probability on input, given data. Possibilities:

Approximation by a Dirac: MAP/Tikhonov [2].

Approximation by a Gaussian: Variational/ML [4].

Approximation by sampling: MCMC [1].

Approximation by sequential sampling: SMC [3].

Approximation by high dimensional integration: Harmonic
analysis, sparse integration [5].
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Example 1: Piecewise Constant Reconstruction

Forward Problem

Let K ∈ L(X ,RJ) for some Banach space X . Given σ ∈ X

y = Kσ.

Let η ∈ RJ be a realization of an observational noise.

Inverse Problem

Impose prior information that σ is piecwise constant:

σ = F (u) := σ+ χ{u≥0}(x) + σ− χ{u<0}(x).

Given y ∈ RJ , find u such that

y = KF (u) + η.
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Example 2: Electrical Impedance Tomography

M. Dunlop and A.M. Stuart
Bayesian formulation of EIT.
arXiv:1509.03136
Inverse Problems and Imaging, Submitted, 2015.

Apply currents I` on e`, ` = 1, . . . , L.
Induces voltages Θ` on e`, ` = 1, . . . , L.
We have an Ohm’s law Θ = R(σ)I .
Find conductivity σ from measurements (I ,Θ).

D

el
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Summary

Blending models with data, and learning models from data, will be major
challenges for the mathemtical sciences in the coming century.

These challenges require new ideas linking computer science, mathematics and
statistics.

The driving applications are central and will help define different problem classes.

Methods from data science may link with pencil/paper first-principles models.

The UK has world-leading expertise in many of the constituent areas of the
mathematical sciences.

An essential barrier, which the ATI can help overcome, is to bring together this
expertise to effectively identify significant intellectual challenges which underpin
different problem classes.

In doing so define data science as a discipline.
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Data Assim
ilation A Mathematical Introduction

� is book provides a systematic treatment of the mathematical underpinnings of work in 
data assimilation, covering both theoretical and computational approaches. Specifi cally 
the authors develop a unifi ed mathematical framework in which a Bayesian formulation 
of the problem provides the bedrock for the derivation, development and analysis of 
algorithms; the many examples used in the text, together with the algorithms which 
are introduced and discussed, are all illustrated by the MATLAB so� ware detailed in 
the book and made freely available online.

� e book is organized into nine chapters: the fi rst contains a brief introduction to the 
mathematical tools around which the material is organized; the next four are concerned 
with discrete time dynamical systems and discrete time data; the last four are concerned 
with continuous time dynamical systems and continuous time data and are organized 
analogously to the corresponding discrete time chapters.

� is book is aimed at mathematical researchers interested in a systematic development 
of this interdisciplinary fi eld, and at researchers from the geosciences, and a variety 
of other scientifi c fi elds, who use tools from data assimilation to combine data with 
time-dependent models. � e numerous examples and illustrations make understand-
ing of the theoretical underpinnings of data assimilation accessible. Furthermore, the 
examples, exercises and MATLAB so� ware, make the book suitable for students in 
applied mathematics, either through a lecture course, or through self-study.
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ISBN 978-3-319-20324-9
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