Dynamic MRI – Imaging Transport and Structure in Transient Systems

Andy Sederman

Department of Chemical Engineering and Biotechnology, Cambridge

The current team

Microsoft Research

Johnson Matthey, ExxonMobil, Shell, BP, Schlumberger, AstraZeneca, GlaxoSmithKline, Merck Sharp & Dohme, NPL

Overview

- Introduction to MRI (and Chemical Engineering)
- Fast velocity imaging of fluids dynamic flows

turbulent liquid flows

- > two phase flows
 - chemical shift separation with compressed sensing
- > do we need an image?
 - Bayesian analysis of acquired data

• Conclusions

What is Chemical Engineering? – and why use MR?

The application of physical and life sciences to understand and develop processes and products

oil industry

chemical process technology

pharmaceutical industry

many different chemical species chemical reaction fluid flows porous media optically opaque

How to get a 2-D image with MRI: k-space

$$\omega(\mathbf{r}) = \gamma \mathbf{G} \cdot \mathbf{r} \qquad S(\mathbf{k}) = \iiint \rho(\mathbf{r}) \exp[i2\pi \mathbf{k} \cdot \mathbf{r}] d\mathbf{r}$$
$$\mathbf{k} = \frac{\gamma \mathbf{G}t}{2\pi} \qquad \mathbf{FT}$$
$$\rho(\mathbf{r}) = \iiint S(\mathbf{k}) \exp[-i2\pi \mathbf{k} \cdot \mathbf{r}] d\mathbf{k}$$

• Sample all of k and after FT we have a fully resolved image

• Steady flow up to Re ~ 2200

Iaminar Newtonian flow, parabolic velocity profile

Onset of turbulence at higher Re
 > time varying flow

Range of applicability

Quantitative relationship between phase and displacement
 measurement over wide range of velocities 10⁻⁶-10² m s⁻¹
 'velocity' over different timescales 10⁻³-10¹ s

van de Meent AJS, LFG et al., J. Fluid Mech, 642, 5 (2010) Newling et al., *Phys. Rev. Lett.*, 93(15), 154503 (2004)

Dynamic processes

- Many systems of practical interest demonstrate some change with time
 - > changing velocity
 - Changing structure
- Imaging approaches to dynamic processes
 - time averaged
 - image over long times compared to fluctuations
 - 'snapshot' imaging
 - speed up acquisitions
 - > periodic systems
 - triggered acquisitions
- How can MRI velocity imaging be used?

Turbulent velocity imaging

ultra-fast velocity imaging sequence: GERVAIS

2D image time:1 velocity component in 20 ms3 velocity components in 60 ms

GERVAIS *J Magn. Reson.* <u>166</u> (2004) 182 Gradient Echo Rapid Velocity and Acceleration Imaging Sequence

Turbulent velocity imaging

Pipe diameter: 29 mm, 1400 μ m \times 700 μ m

Sederman et al., JMR, (2004)

Can we image even faster?

- We want to reduce timescales further
 - 60 ms is still long for many systems
- Can we acquire all data points in a more efficient and robust way?

Faster images

> minimise errors for high velocity flows

Fast continuous image acquisition

Do we need to acquire all of our k-space data points?
 > under-sampling – 'sparse' acquisition
 > non-FT reconstruction

- Benefits
 - 'simple' MRI pulse sequence
 - Faster coverage of k-space for given hardware limitations
 - robustness to velocity effects

- Benefits
 - 'simple' MRI pulse sequence
 - Faster coverage of k-space for given hardware limitations
 - robustness to velocity effects

- Compressed sensing
 - if an image can be represented in some transform domain by significantly fewer data points, it must be possible to acquire fewer data points in the first place

Andrew Blake Microsoft Research/Alan Turing Institute

Spiral and CS: results

47

z-velocity (cm s⁻¹)

0

High resolution pipe flow velocity images at Re = 5000
> acquire 28% cf fully sampled image
> 64 × 64 pixels, resolution of 325 µm × 325 µm
> repetition time of 5.3 ms, 188 fps

CS-Spiral velocity imaging of single bubbles

velocity images of water around a rising air bubble

- single component velocity images in 5.3 ms
- 3-component velocity images in 16 ms (63 fps)
- spatial resolution 390 $\mu m \times 586 \; \mu m$
- field-of-view: 20 mm × 30 mm
- vortex shedding at a rate of 12.6 ± 1.1 Hz
- droplet rise velocity = 21 cm s⁻¹

Why do bubbles wobble?

Phys. Rev. Lett. 108 (2012) 264505

Z,

18

Why do bubbles wobble?

In addition to the counter-rotating vortices in longitudinal plane, there exists a secondary mode of vorticity in the horizontal plane
direct coupling between direction of bubble path and secondary vortex; secondary vortices reverse direction following every shedding event

Can we extend this to liquid-liquid flows?

• Chemical shift differences between peaks in spectra lead to extra signal dephaseing

> chemical shift artefacts

• Similar proton densities

> difficult to distinguish phases

sparse perturbed spiral sampling

Simultaneous measurement of oil and water flow fields 50 cSt PDMS droplet rising through water

Tayler et al. Phys. Rev. E 89 (2014) 063009

spatial resolution = 540 μ m × 540 μ m; image slice thickness = 500 μ m

Why take an image? – A Bayesian approach

Why take an image? – A Bayesian approach

Why take an image? – A Bayesian approach

Bayesian bubble size measurement

comparison with optical measurements

Distribution I

MR

Distribution II

Distribution III

Optical techniques cannot be used at high voidage

Time resolved result

- Surfactants decrease the surface tension and, therefore, the bubble size
- Change in bubble size tracked in real time as a pulse of surfactant is injected at the base of a bubble column
- Bubble size monitored every 3 s

Summary

- MRI velocity imaging can be used to develop the understanding of many dynamic processes
- More 'intelligent' data acquisition and reconstruction can help to increase imaging speeds
 image acquisition times as short as 5 ms
- Sometimes the important information can be obtained without the need for an image

Bayesian analysis